EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Jan 7 2020

Outline

• Introduction

• Administrative

• Overview of topics and applications

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Administrative

Teaching staff

Instructor: Mert Pilanci

- Email: pilanci@stanford.edu
- Office hours: Wednesday 3-5pm in Packard 255
- TA: Tolga Ergen, ergen@stanford.edu

TA office hours: TBA

Public web page : http://web.stanford.edu/class/ee270/

> Please check Canvas for up-to-date info For all questions please use Piazza

This course will explore the theory and practice of randomized matrix computation and optimization for large-scale problems to address challenges in modern massive data sets.

- Our goal in this course is to help you to learn:
 - randomized methods for linear algebra, optimization and machine learning

This course will explore the theory and practice of randomized matrix computation and optimization for large-scale problems to address challenges in modern massive data sets.

- Our goal in this course is to help you to learn:
 - randomized methods for linear algebra, optimization and machine learning
 - probabilistic tools for analyzing randomized approximations

This course will explore the theory and practice of randomized matrix computation and optimization for large-scale problems to address challenges in modern massive data sets.

- Our goal in this course is to help you to learn:
 - randomized methods for linear algebra, optimization and machine learning
 - **probabilistic tools** for analyzing randomized approximations
 - how to implement optimization algorithms for large scale problems

This course will explore the theory and practice of randomized matrix computation and optimization for large-scale problems to address challenges in modern massive data sets.

- Our goal in this course is to help you to learn:
 - randomized methods for linear algebra, optimization and machine learning
 - probabilistic tools for analyzing randomized approximations
 - how to implement optimization algorithms for large scale problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

applications in machine learning, statistics, signal processing and data mining.

Prerequisites

- ► Familiarity with linear algebra (EE 103 or equivalent).
- Probability theory and statistics (EE 178 or equivalent)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Basic programming skills

Homework

- Assigned homeworks will be bi-weekly.
- The problem sets will include programming assignments to implement algorithms covered in the class.
- We will also analyze randomized algorithms using probabilistic tools.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We support Python and Matlab.

Group Study

Homework:

- Working in groups is allowed, but each member must submit their own writeup.
- Write the members of your group on your solutions (Up to four people are allowed).

► Project:

- You will be asked to form groups of about 1-2 people and choose a topic
- I will suggest a list of research problems on the course website

- Proposal (1 page) and progress report (4 pages)
- Final presentation (last week of classes)

Topics

randomized linear algebra

- approximate matrix multiplication
- tools from probability theory
- sampling and projection methods
- randomized linear system solvers and regression
 - leverage scores
 - iterative sketching and preconditioning
 - sparse linear systems
 - robust regression
- matrix decompositions
 - randomized QR decomposition
 - randomized low rank factorization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

column subset selection

Topics

large-scale optimization

- empirical risk minimization
- stochastic gradient methods and variants
- second order methods and Hessian approximations
- asynchronous distributed optimization
- kernel methods
 - Reproducing kernel Hilbert spaces
 - Nystrom approximations
 - Random features
 - neural networks and Neural Tangent Kernel
- information-theoretic methods
 - Error-resilient computations via error-correcting codes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lower-bounds on random projections

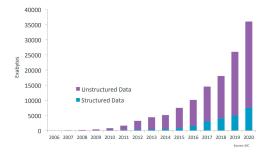
For details see Canvas!

Any questions?

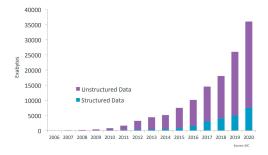
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview of topics and applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



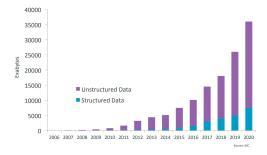
▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣



・ロト ・ 同ト ・ ヨト ・ ヨト

э

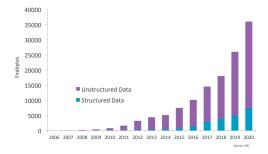
Every day, we create 2.5 billion gigabytes of data



- Every day, we create 2.5 billion gigabytes of data
- Data stored grows 4x faster than world economy (Mayer-Schonberger)

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э



- Every day, we create 2.5 billion gigabytes of data
- Data stored grows 4x faster than world economy (Mayer-Schonberger)

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Deep learning revolution

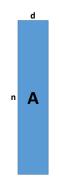


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

ImageNet Classification, top-5 error (%)

Big data matrices

n × d datamatrix



- **Small:** we can look at the data and find solutions easily
- Medium: Fits into RAM and one can run computations in reasonable time
- ► Large: Doesn't easily fit into RAM. One can't relatively easily run computations.

Typical data matrices

- Rectangular data (object-feature data): n objects, each of which are described by d features, e.g., document-term data, people-SNPs data.
- Correlation matrices
- Kernels and similarity matrices
- Laplacians or Adjacency matrices of graphs.
- Discretizations of dynamical systems, ODEs and PDEs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Constraint matrices
- ▶ ..

Typical data matrices

÷

Rectangular data:

essentially a two-dimensional matrix with rows indicating records (cases) and columns indicating features (variables)

Example: Airline dataset

depart	arrive	origin	dest	dist	weather delay	cancelled
00:00:01	13:35:01	RNO	LAS	345	0	1
07:20:01	08:40:01	SFO	SAN	447	40	0
07:25:01	10:15:01	OAK	PHX	646	0	0
07:30:01	08:30:01	OAK	BUR	325	0	0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

in machine learning, statistics and signal processing

 $\blacktriangleright \text{ More data points typically increase the accuracy of models} \\ \rightarrow \text{ large scale matrix computation and optimization problems}$

e.g. matrix multiplication, matrix factorization, singular value decomposition, convex optimization, non-convex optimization...

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

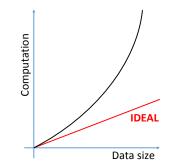
in machine learning, statistics and signal processing

More data points typically increase the accuracy of models

 → large scale matrix computation and optimization problems

e.g. matrix multiplication, matrix factorization, singular value decomposition, convex optimization, non-convex optimization...

Can we reduce the data volume with minimal loss of information ?



Matrix Computations

▶ Data matrix $A \in R^{n \times d}$ where n, d are extremely large

Matrix Computations

▶ Data matrix $A \in R^{n \times d}$ where n, d are extremely large

Examples:

• Airline dataset (120GB) $n = 120 \times 10^6$, d = 28Flight arrival and departure details from 1987 to 2008

Matrix Computations

▶ Data matrix $A \in R^{n \times d}$ where n, d are extremely large

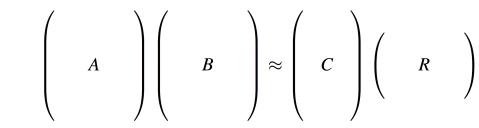
Examples:

- Airline dataset (120GB) n = 120 × 10⁶, d = 28
 Flight arrival and departure details from 1987 to 2008
- Imagenet dataset (1.31TB) n = 14 × 10⁶, d = 2 × 10⁵
 14 Million images for visual recognition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

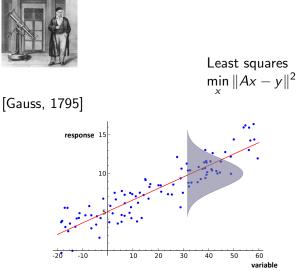
[US Department of Transportation] [Deng et al. 2009] Approximate Matrix Multiplication

How to approximate the matrix product AB fast ?



ヘロト 人間 とくほとくほとう

Least Squares Problems

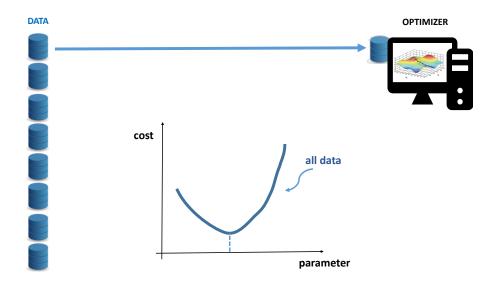


DATA

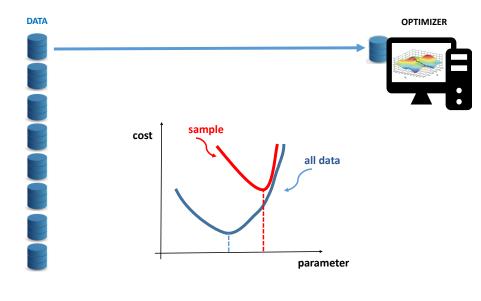
OPTIMIZER

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = - のへぐ

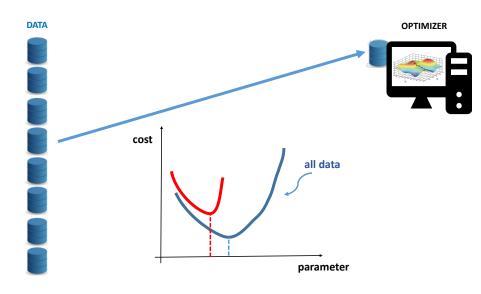
▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●



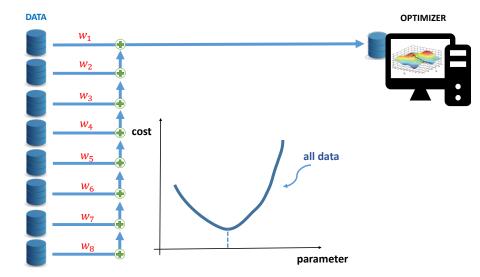
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで



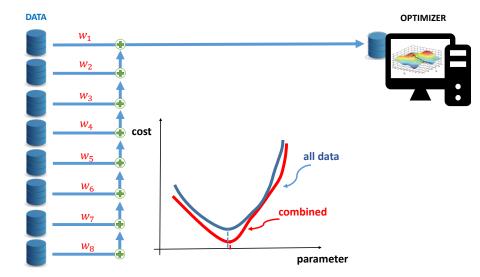
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

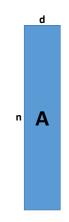


・ロ・・ 「「・・」、 ・ 「」、 ・ 「」、 ・ ・ 」



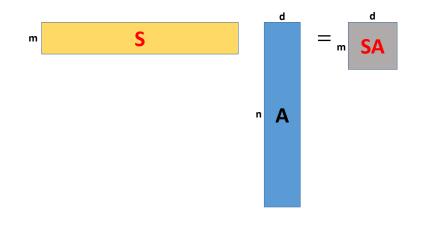
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Randomized Sketching



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Randomized Sketching



・ロト・日本・日本・日本・日本・日本

Randomized Least Squares Solvers

- $A : n \times d$ feature matrix, and $y : n \times 1$ response vector
- Original problem **OPT** = $\min_{x \in C} ||Ax y||^2$
- Randomized approximation

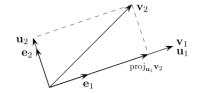
$$\min_{x\in\mathcal{C}} \underbrace{\|\tilde{A}x-\tilde{y}\|^2}_{\text{int}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• \tilde{A} and \tilde{y} are smaller approximations

QR decomposition

The Gram–Schmidt process takes a finite, linearly independent set of vectors v₁, ..., v_n ∈ ℝ^d generates an orthogonal set u₁, ..., u_k ∈ ℝ^d that spans the same n-dimensional subspace.

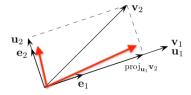


 $\begin{aligned} \mathbf{u}_{1} &= \mathbf{v}_{1}, & \mathbf{e}_{1} &= \frac{\mathbf{u}_{1}}{\|\mathbf{u}_{1}\|} \\ \mathbf{u}_{2} &= \mathbf{v}_{2} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{2}), & \mathbf{e}_{2} &= \frac{\mathbf{u}_{2}}{\|\mathbf{u}_{2}\|} \\ \mathbf{u}_{3} &= \mathbf{v}_{3} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{3}) - \operatorname{proj}_{\mathbf{u}_{2}}(\mathbf{v}_{3}), & \mathbf{e}_{3} &= \frac{\mathbf{u}_{3}}{\|\mathbf{u}_{3}\|} \\ \mathbf{u}_{4} &= \mathbf{v}_{4} - \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}_{4}) - \operatorname{proj}_{\mathbf{u}_{2}}(\mathbf{v}_{4}) - \operatorname{proj}_{\mathbf{u}_{3}}(\mathbf{v}_{4}), & \mathbf{e}_{4} &= \frac{\mathbf{u}_{4}}{\|\mathbf{u}_{4}\|} \\ &\vdots & \vdots & \end{aligned}$

(日)

QR decomposition

The Gram–Schmidt process takes a finite, linearly independent set of vectors v₁, ..., v_n ∈ ℝ^d generates an orthogonal set u₁, ..., u_k ∈ ℝ^d that spans the same n-dimensional subspace.



- complexity O(dn²)
- randomized algorithm complexity ≈ O(dn) produces an approximately orthogonal basis

Low-rank matrix approximations

- Singular Value Decomposition (SVD)
- $\blacktriangleright A = U\Sigma V^T$
- ▶ takes $O(nd^2)$ time for $A \in R^{n \times d}$
- best rank-k approximation is $A_k := U_k \Sigma_k V_k^T = \sum_{i=1}^k \sigma_i u_i v_i^T$

 $||A - A_k||_2 \le \sigma_{k+1}$

Randomized low-rank matrix approximations

- Randomized (SVD)
- approximation C (e.g. a subset of the columns of A)

•
$$AA^T \approx CC^T$$

• $\tilde{A}_k = CC^{\dagger}A$ is a randomized rank-k approximation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$\|A - \tilde{A}_k\|_2^2 \le \sigma_{k+1}^2 + \epsilon \|A\|_2^2$$

Iterative Methods

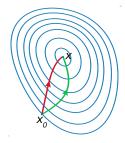
- Gradient descent and momentum acceleration
- Iterative sketching methods
- Conjugate gradient
- Preconditioning
- Sparse linear systems
- Stochastic Gradient Descent
- Variance reduction
- Adaptive gradient methods: Adagrad, ADAM

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

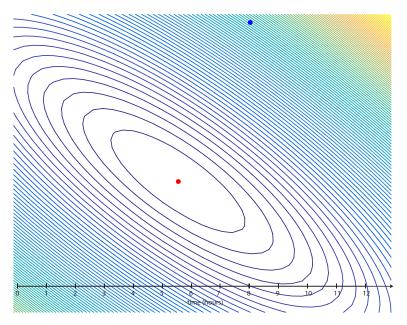
Newton's Method

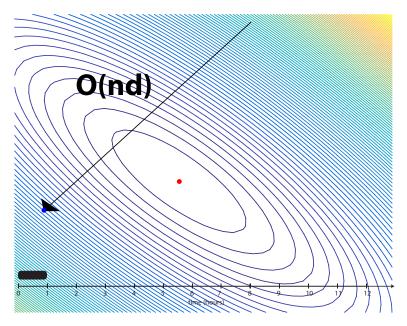
 $\min_{x\in\mathcal{C}}g(x)$

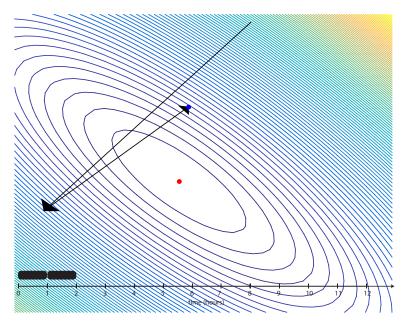
$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \langle \nabla g(x^t), x - x^t \rangle + \frac{1}{2} (x - x^t)^T \nabla^2 g(x^t) (x - x^t)$$

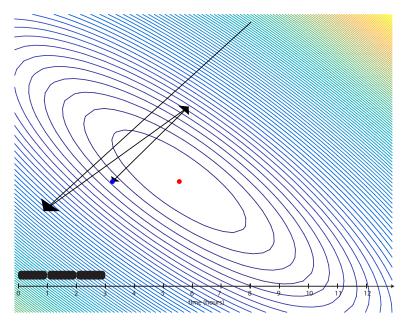


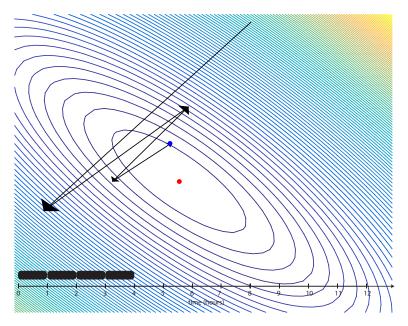
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

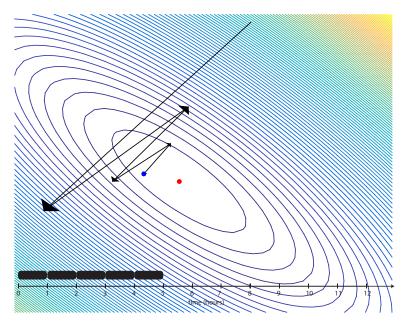


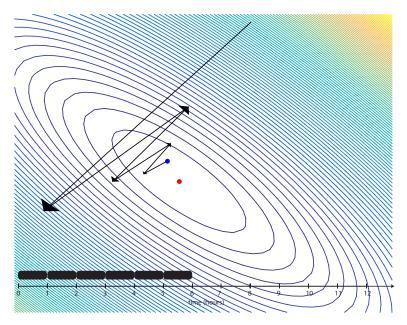


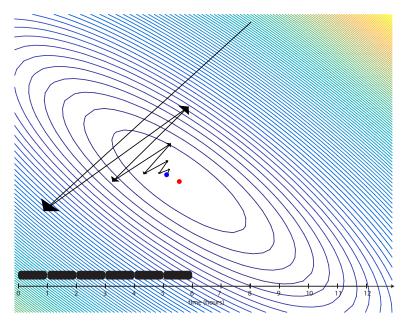


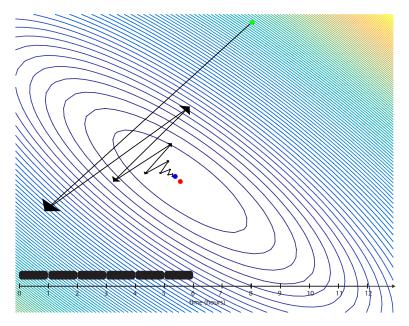


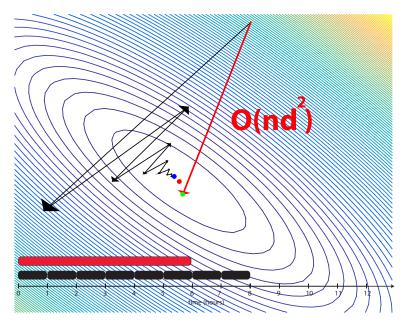


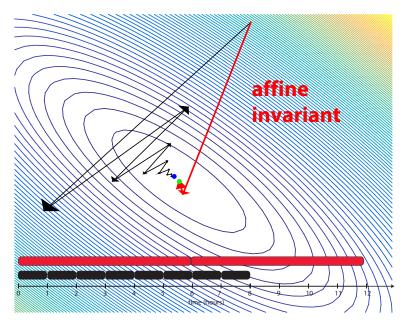


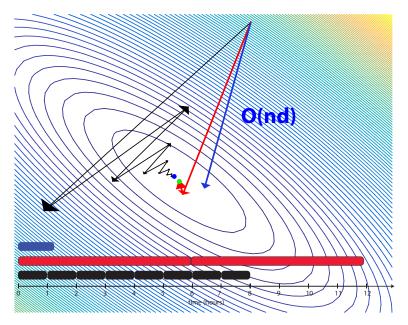


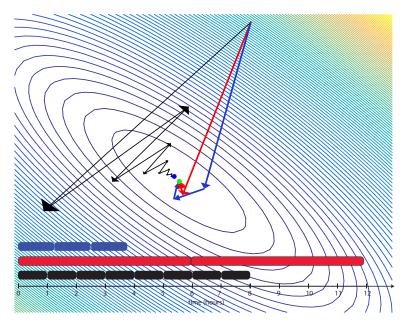










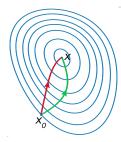


Randomized Newton's Method

 $\min_{x\in\mathcal{C}}g(x)$

$$x^{t+1} = \arg\min_{x\in\mathcal{C}} \langle
abla g(x^t), x - x^t
angle + rac{1}{2} (x - x^t)^T ilde{
abla}^2 g(x^t) (x - x^t)$$

• $\tilde{
abla}^2 g(x^t) \approx
abla^2 g(x^t)$ is an approximate Hessian



・ロト・日本・モト・モー ショー ショー

Randomized Newton's Method

 $\min_{x\in\mathcal{C}}g(x)$

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \langle \nabla g(x^t), x - x^t \rangle + \frac{1}{2} (x - x^t)^T \tilde{\nabla}^2 g(x^t) (x - x^t)$$

•
$$\tilde{
abla}^2 g(x^t) pprox
abla^2 g(x^t)$$
 is an approximate Hessian

Diagonal, subsampled, low-rank approximations yield

- Adagrad, ADAM
- Stochastic Variance Reduced Gradient (SVRG)
- Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

Linear Programming

▶ LP in standard form where $A \in R^{n \times d}$

$$\min_{Ax \le b} c^T x$$

Log barrier

$$\min_x \mu c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Linear Programming

▶ LP in standard form where $A \in R^{n \times d}$

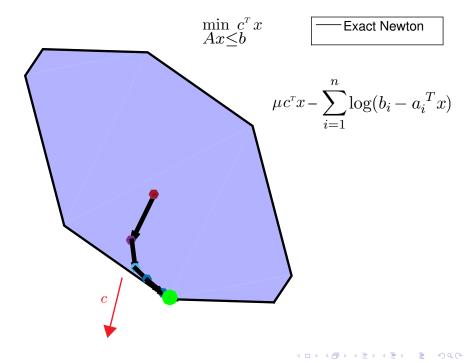
$$\min_{Ax \le b} c^T x$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Log barrier

$$\min_{x} \mu c^{T} x - \sum_{i=1}^{n} \log(b_{i} - a_{i}^{T} x)$$

$$\blacktriangleright \text{ Hessian } A^{T} diag\left(\frac{1}{(b_{i} - a_{i}^{T} x)^{2}}\right) A \text{ takes } O(nd^{2}) \text{ operations}$$



Interior Point Methods for Linear Programming

• Hessian of
$$f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$$

$$\nabla^2 f(x) = A^T \operatorname{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A,$$

Interior Point Methods for Linear Programming

• Hessian of
$$f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$$

$$\nabla^2 f(x) = A^T \operatorname{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A,$$

$$(\nabla^2 f(x))^{1/2} = diag\left(\frac{1}{|b_i - a_i^T x|}\right)A$$
,

Interior Point Methods for Linear Programming

• Hessian of
$$f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$$

$$\nabla^2 f(x) = A^T \operatorname{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A,$$

Root of the Hessian

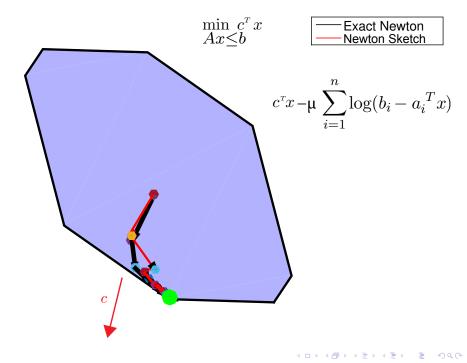
$$(\nabla^2 f(x))^{1/2} = diag\left(rac{1}{|b_i - a_i^T x|}
ight) A \; ,$$

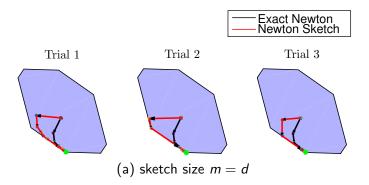
Sketch of the Hessian

$$S^t(\nabla^2 f(x))^{1/2} = S^t diag\left(rac{1}{|b_i - a_i^T x|}
ight) A$$

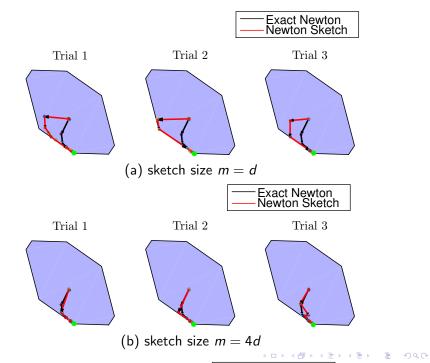
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

takes $O(md^2)$ operations





◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



High dimensional problems $n \ll d$

►
$$x^{t+1} = Ax_t + Bu_t$$
, $t = 1, ..., T$

High dimensional problems $n \ll d$

►
$$x^{t+1} = Ax_t + Bu_t, \quad t = 1, ..., T$$
► minimum fuel control from $0 \rightarrow x_f$
 $\min_u \|u\|_1$
s.t. [B AB $A^2B \cdots$] $u = x_f$

- nT decision variables
- We can apply sampling and sketching for the variables $u \in \mathbb{R}^{nT}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Basic idea: dual linear program has nT constraints

Kernel methods

Kernel matrices

given data points $x_1, ..., x_n \in \mathbb{R}^d$ e.g., Gaussian kernel $K_{ij} = e^{-\frac{1}{\sigma^2} ||x_i - x_j||_2^2}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

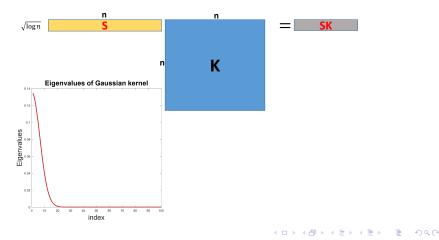
large $n \times n$ square matrices

Kernel methods

Kernel matrices

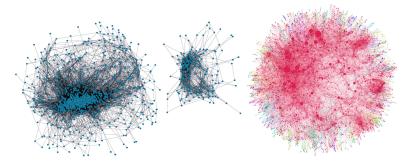
given data points $x_1, ..., x_n \in \mathbb{R}^d$ e.g., Gaussian kernel $K_{ij} = e^{-\frac{1}{\sigma^2} ||x_i - x_j||_2^2}$

large $n \times n$ square matrices



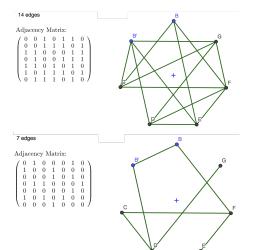
Large Graphs

- Adjacency matrix or Laplacian
- Examples: a gene network and a co-authorship network graph



Sampling Graphs

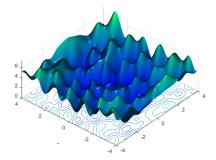
Random sampling graphs



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Non-convex Optimization Problems

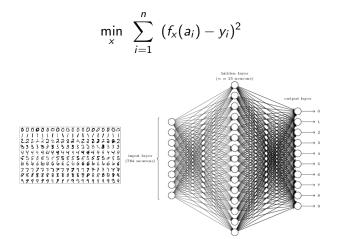
- In general, very difficult to solve globally
- Need to make further assumptions



A D > A P > A D > A D >

э

Non-convex Optimization Problems



(ロ) (型) (E) (E) (E) (O)(C)

Non-convex Optimization Problems

$$\min_{x} \sum_{i=1}^{n} (f_{x}(a_{i}) - y_{i})^{2}$$

 $\rightarrow\,$ Heuristic: Gauss-Newton method

$$x_{t+1} = \arg\min_{x} \| \underbrace{f_{x_t}(A) + J_t x}_{\text{Taylor's approx for } f_x} -y \|_2^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $(J_t)_{ij} = \frac{\partial}{\partial x_j} f_x(a_i)$ is the Jacobian matrix • Jacobian can be sampled for faster computations

Questions?