
EE270

Large scale matrix computation,

optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Jan 7 2020

Outline

• Introduction

• Administrative

• Overview of topics and applications

Administrative
Teaching sta↵

I Instructor: Mert Pilanci
I Email: pilanci@stanford.edu
I O�ce hours: Wednesday 3-5pm in Packard 255

TA: Tolga Ergen, ergen@stanford.edu

I TA o�ce hours: TBA

I Public web page :
http://web.stanford.edu/class/ee270/

Please check Canvas for up-to-date info
For all questions please use Piazza

About EE-270

This course will explore the theory and practice of randomized
matrix computation and optimization for large-scale problems to
address challenges in modern massive data sets.
I Our goal in this course is to help you to learn:

I randomized methods for linear algebra, optimization and
machine learning

I probabilistic tools for analyzing randomized approximations
I how to implement optimization algorithms for large scale

problems
I applications in machine learning, statistics, signal

processing and data mining.

About EE-270

This course will explore the theory and practice of randomized
matrix computation and optimization for large-scale problems to
address challenges in modern massive data sets.
I Our goal in this course is to help you to learn:

I randomized methods for linear algebra, optimization and
machine learning

I probabilistic tools for analyzing randomized approximations

I how to implement optimization algorithms for large scale
problems

I applications in machine learning, statistics, signal

processing and data mining.

About EE-270

This course will explore the theory and practice of randomized
matrix computation and optimization for large-scale problems to
address challenges in modern massive data sets.
I Our goal in this course is to help you to learn:

I randomized methods for linear algebra, optimization and
machine learning

I probabilistic tools for analyzing randomized approximations
I how to implement optimization algorithms for large scale

problems

I applications in machine learning, statistics, signal

processing and data mining.

About EE-270

This course will explore the theory and practice of randomized
matrix computation and optimization for large-scale problems to
address challenges in modern massive data sets.
I Our goal in this course is to help you to learn:

I randomized methods for linear algebra, optimization and
machine learning

I probabilistic tools for analyzing randomized approximations
I how to implement optimization algorithms for large scale

problems
I applications in machine learning, statistics, signal

processing and data mining.

Prerequisites

I Familiarity with linear algebra (EE 103 or equivalent).

I Probability theory and statistics (EE 178 or equivalent)

I Basic programming skills

Homework

I Assigned homeworks will be bi-weekly.

I The problem sets will include programming assignments to
implement algorithms covered in the class.

I We will also analyze randomized algorithms using probabilistic
tools.

I We support Python and Matlab.

Group Study

I Homework:
I Working in groups is allowed, but each member must submit

their own writeup.
I Write the members of your group on your solutions (Up to

four people are allowed).

I Project:
I You will be asked to form groups of about 1-2 people and

choose a topic
I I will suggest a list of research problems on the course website
I Proposal (1 page) and progress report (4 pages)
I Final presentation (last week of classes)

Topics

I randomized linear algebra
I approximate matrix multiplication
I tools from probability theory
I sampling and projection methods

I randomized linear system solvers and regression
I leverage scores
I iterative sketching and preconditioning
I sparse linear systems
I robust regression

I matrix decompositions
I randomized QR decomposition
I randomized low rank factorization
I column subset selection

Topics

I large-scale optimization
I empirical risk minimization
I stochastic gradient methods and variants
I second order methods and Hessian approximations
I asynchronous distributed optimization

I kernel methods
I Reproducing kernel Hilbert spaces
I Nystrom approximations
I Random features
I neural networks and Neural Tangent Kernel

I information-theoretic methods
I Error-resilient computations via error-correcting codes
I Lower-bounds on random projections

For details see Canvas!

Any questions?

Overview of topics and applications

Scale of data

I Every day, we create 2.5 billion gigabytes of data

I Data stored grows 4x faster than world economy (Mayer-Schonberger)

Scale of data

I Every day, we create 2.5 billion gigabytes of data

I Data stored grows 4x faster than world economy (Mayer-Schonberger)

Scale of data

I Every day, we create 2.5 billion gigabytes of data

I Data stored grows 4x faster than world economy (Mayer-Schonberger)

Scale of data

I Every day, we create 2.5 billion gigabytes of data

I Data stored grows 4x faster than world economy (Mayer-Schonberger)

Deep learning revolution

Big data matrices
I n ⇥ d datamatrix

An

d

I Small: we can look at the data and find solutions easily
I Medium: Fits into RAM and one can run computations in

reasonable time
I Large: Doesn’t easily fit into RAM. One can’t relatively easily

run computations.

Typical data matrices

I Rectangular data (object-feature data): n objects, each of
which are described by d features, e.g., document-term data,
people-SNPs data.

I Correlation matrices

I Kernels and similarity matrices

I Laplacians or Adjacency matrices of graphs.

I Discretizations of dynamical systems, ODEs and PDEs

I Constraint matrices

I ...

Typical data matrices

I Rectangular data:

essentially a two-dimensional matrix with rows indicating
records (cases) and columns indicating features (variables)

I Example: Airline dataset

depart arrive origin dest dist weather delay cancelled

00:00:01 13:35:01 RNO LAS 345 0 1
07:20:01 08:40:01 SFO SAN 447 40 0
07:25:01 10:15:01 OAK PHX 646 0 0
07:30:01 08:30:01 OAK BUR 325 0 0

...

in machine learning, statistics and signal processing

I More data points typically increase the accuracy of models
! large scale matrix computation and optimization problems

e.g. matrix multiplication, matrix factorization, singular value
decomposition, convex optimization, non-convex
optimization...

Can we reduce the data volume with minimal loss of

information ?

in machine learning, statistics and signal processing

I More data points typically increase the accuracy of models
! large scale matrix computation and optimization problems

e.g. matrix multiplication, matrix factorization, singular value
decomposition, convex optimization, non-convex
optimization...

Can we reduce the data volume with minimal loss of

information ?

Data size

Co
m

pu
ta

tio
n

IDEAL

Matrix Computations

I Data matrix A 2 R
n⇥d where n, d are extremely large

Examples:

I Airline dataset (120GB) n = 120⇥ 106, d = 28
Flight arrival and departure details from 1987 to 2008

I Imagenet dataset (1.31TB) n = 14⇥ 106, d = 2⇥ 105

14 Million images for visual recognition

[US Department of Transportation]
[Deng et al. 2009]

Matrix Computations

I Data matrix A 2 R
n⇥d where n, d are extremely large

Examples:

I Airline dataset (120GB) n = 120⇥ 106, d = 28
Flight arrival and departure details from 1987 to 2008

I Imagenet dataset (1.31TB) n = 14⇥ 106, d = 2⇥ 105

14 Million images for visual recognition

[US Department of Transportation]
[Deng et al. 2009]

Matrix Computations

I Data matrix A 2 R
n⇥d where n, d are extremely large

Examples:

I Airline dataset (120GB) n = 120⇥ 106, d = 28
Flight arrival and departure details from 1987 to 2008

I Imagenet dataset (1.31TB) n = 14⇥ 106, d = 2⇥ 105

14 Million images for visual recognition

[US Department of Transportation]
[Deng et al. 2009]

Approximate Matrix Multiplication

I How to approximate the matrix product AB fast ?

Least Squares Problems

Least squares
min
x

kAx � yk2

[Gauss, 1795]

variable

response

DATA OPTIMIZER

DATA OPTIMIZER

DATA OPTIMIZER

parameter

cost

all data

DATA OPTIMIZER

parameter

cost

all data

sample

DATA OPTIMIZER

parameter

cost

all data

DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

combined

Randomized Sketching

An

d

Randomized Sketching

An

d

Sm SA= m

d

Randomized Least Squares Solvers

I A : n ⇥ d feature matrix, and y : n ⇥ 1 response vector

I Original problem OPT = min
x2C

kAx � yk2| {z }
I Randomized approximation min

x2C
kÃx � ỹk2| {z }

I Ã and ỹ are smaller approximations

QR decomposition

I The Gram–Schmidt process takes a finite, linearly independent
set of vectors v1, ..., vn 2 Rd generates an orthogonal set
u1, ..., uk 2 Rd that spans the same n-dimensional subspace.

QR decomposition

I The Gram–Schmidt process takes a finite, linearly independent
set of vectors v1, ..., vn 2 Rd generates an orthogonal set
u1, ..., uk 2 Rd that spans the same n-dimensional subspace.

I complexity O(dn2)

I randomized algorithm complexity ⇡ O(dn)

produces an approximately orthogonal basis

Low-rank matrix approximations

I Singular Value Decomposition (SVD)

I A = U⌃V T

I takes O(nd2) time for A 2 R
n⇥d

I best rank-k approximation is Ak := Uk⌃kV
T
k =

Pk
i=1 �iuiv

T
i

I kA� Akk2  �k+1

Randomized low-rank matrix approximations

I Randomized (SVD)

I approximation C (e.g. a subset of the columns of A)

I AA
T ⇡ CC

T

I Ãk = CC
†
A is a randomized rank-k approximation

I kA� Ãkk22  �
2
k+1 + ✏kAk22

Iterative Methods

I Gradient descent and momentum acceleration

I Iterative sketching methods

I Conjugate gradient

I Preconditioning

I Sparse linear systems

I Stochastic Gradient Descent

I Variance reduction

I Adaptive gradient methods: Adagrad, ADAM

Newton’s Method

min
x2C

g(x)

x
t+1 = argmin

x2C
hrg(x t), x � x

ti+ 1

2
(x � x

t)Tr2
g(x t)(x � x

t)

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

0	OE

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

0	OE�

�

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

BGGJOF�
JOWBSJBOU

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

0	OE

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Randomized Newton’s Method

min
x2C

g(x)

x
t+1 = argmin

x2C
hrg(x t), x � x

ti+ 1

2
(x � x

t)T r̃2
g(x t)(x � x

t)

I r̃2
g(x t) ⇡ r2

g(x t) is an approximate Hessian

Randomized Newton’s Method

min
x2C

g(x)

x
t+1 = argmin

x2C
hrg(x t), x � x

ti+ 1

2
(x � x

t)T r̃2
g(x t)(x � x

t)

I r̃2
g(x t) ⇡ r2

g(x t) is an approximate Hessian

Diagonal, subsampled, low-rank approximations yield

I Adagrad, ADAM

I Stochastic Variance Reduced Gradient (SVRG)

I Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

Linear Programming

I LP in standard form where A 2 R
n⇥d

min
Axb

c
T
x

I Log barrier

minx µcT x �
nX

i=1

log(bi � a
T
i x)

I Hessian A
T
diag

⇣
1

(bi�aTi x)
2

⌘
A takes O(nd2) operations

Linear Programming

I LP in standard form where A 2 R
n⇥d

min
Axb

c
T
x

I Log barrier

minx µcT x �
nX

i=1

log(bi � a
T
i x)

I Hessian A
T
diag

⇣
1

(bi�aTi x)
2

⌘
A takes O(nd2) operations

Exact Newton

Xn

i=1

log(bi���aiT�x)

c�

c
T�
x�¦

min� cT�
x

Axb

µ

Interior Point Methods for Linear Programming

I Hessian of f (x) = c
T
x �

Pn
i=1 log(bi � a

T
i x)

r2
f (x) = A

T
diag

✓
1

(bi � aTi x)
2

◆
A ,

I Root of the Hessian

(r2
f (x))1/2 = diag

✓
1

|bi � aTi x |

◆
A ,

I Sketch of the Hessian

S
t(r2

f (x))1/2 = S
t
diag

✓
1

|bi � aTi x |

◆
A

takes O(md
2) operations

Interior Point Methods for Linear Programming

I Hessian of f (x) = c
T
x �

Pn
i=1 log(bi � a

T
i x)

r2
f (x) = A

T
diag

✓
1

(bi � aTi x)
2

◆
A ,

I Root of the Hessian

(r2
f (x))1/2 = diag

✓
1

|bi � aTi x |

◆
A ,

I Sketch of the Hessian

S
t(r2

f (x))1/2 = S
t
diag

✓
1

|bi � aTi x |

◆
A

takes O(md
2) operations

Interior Point Methods for Linear Programming

I Hessian of f (x) = c
T
x �

Pn
i=1 log(bi � a

T
i x)

r2
f (x) = A

T
diag

✓
1

(bi � aTi x)
2

◆
A ,

I Root of the Hessian

(r2
f (x))1/2 = diag

✓
1

|bi � aTi x |

◆
A ,

I Sketch of the Hessian

S
t(r2

f (x))1/2 = S
t
diag

✓
1

|bi � aTi x |

◆
A

takes O(md
2) operations

Exact Newton
Newton Sketch

Xn

i=1

log(bi���aiT�x)

c�

c
T�
x�¦�

min� cT�
x

Axb

Trial 1 Trial 2 Trial 3

Exact Newton
Newton Sketch

(a) sketch size m = d

(b) sketch size m = 4d

Trial 1 Trial 2 Trial 3

Exact Newton
Newton Sketch

(a) sketch size m = d

(b) sketch size m = 4d

Trial 1 Trial 2 Trial 3

Exact Newton
Newton Sketch

(a) sketch size m = d

Trial 1 Trial 2 Trial 3

Exact Newton
Newton Sketch

(b) sketch size m = 4d

Trial 1 Trial 2 Trial 3

Exact Newton
Newton Sketch

(a) sketch size m = d

(b) sketch size m = 4d

High dimensional problems n ⌧ d

I x
t+1 = Axt + But , t = 1, ...,T

I minimum fuel control from 0 ! xf

min
u

kuk1

s.t. [B AB A
2
B · · ·]u = xf

I nT decision variables

I We can apply sampling and sketching for the variables
u 2 RnT

I Basic idea: dual linear program has nT constraints

High dimensional problems n ⌧ d

I x
t+1 = Axt + But , t = 1, ...,T

I minimum fuel control from 0 ! xf

min
u

kuk1

s.t. [B AB A
2
B · · ·]u = xf

I nT decision variables

I We can apply sampling and sketching for the variables
u 2 RnT

I Basic idea: dual linear program has nT constraints

Kernel methods
I Kernel matrices

given data points x1, ..., xn 2 Rd

e.g., Gaussian kernel Kij = e
� 1

�2 kxi�xjk22

I large n ⇥ n square matrices

Kernel methods
I Kernel matrices

given data points x1, ..., xn 2 Rd

e.g., Gaussian kernel Kij = e
� 1

�2 kxi�xjk22

I large n ⇥ n square matrices

Kn

S SK=
n

log 𝑛
n

Large Graphs

I Adjacency matrix or Laplacian

I Examples: a gene network and a co-authorship network graph

Sampling Graphs

I Random sampling graphs

Non-convex Optimization Problems

I In general, very di�cult to solve globally

I Need to make further assumptions

Non-convex Optimization Problems

min
x

nX

i=1

(fx(ai)� yi)
2

Non-convex Optimization Problems

min
x

nX

i=1

(fx(ai)� yi)
2

! Heuristic: Gauss-Newton method

xt+1 = argmin
x

k fxt (A) + Jtx| {z }
Taylor’s approx for fx

�yk22

where (Jt)ij =
@
@xj

fx(ai) is the Jacobian matrix

I Jacobian can be sampled for faster computations

Questions?

	 Introduction
	 Administrative
	 Overview of topics and applications

