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Administrative
Teaching sta↵

I Instructor: Mert Pilanci
I Email: pilanci@stanford.edu
I O�ce hours: Wednesday 3-5pm in Packard 255

TA: Tolga Ergen, ergen@stanford.edu

I TA o�ce hours: TBA

I Public web page :
http://web.stanford.edu/class/ee270/

Please check Canvas for up-to-date info
For all questions please use Piazza



About EE-270

This course will explore the theory and practice of randomized
matrix computation and optimization for large-scale problems to
address challenges in modern massive data sets.
I Our goal in this course is to help you to learn:

I randomized methods for linear algebra, optimization and
machine learning

I probabilistic tools for analyzing randomized approximations
I how to implement optimization algorithms for large scale

problems
I applications in machine learning, statistics, signal

processing and data mining.
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Prerequisites

I Familiarity with linear algebra (EE 103 or equivalent).

I Probability theory and statistics (EE 178 or equivalent)

I Basic programming skills



Homework

I Assigned homeworks will be bi-weekly.

I The problem sets will include programming assignments to
implement algorithms covered in the class.

I We will also analyze randomized algorithms using probabilistic
tools.

I We support Python and Matlab.



Group Study

I Homework:
I Working in groups is allowed, but each member must submit

their own writeup.
I Write the members of your group on your solutions (Up to

four people are allowed).

I Project:
I You will be asked to form groups of about 1-2 people and

choose a topic
I I will suggest a list of research problems on the course website
I Proposal (1 page) and progress report (4 pages)
I Final presentation (last week of classes)



Topics

I randomized linear algebra
I approximate matrix multiplication
I tools from probability theory
I sampling and projection methods

I randomized linear system solvers and regression
I leverage scores
I iterative sketching and preconditioning
I sparse linear systems
I robust regression

I matrix decompositions
I randomized QR decomposition
I randomized low rank factorization
I column subset selection



Topics

I large-scale optimization
I empirical risk minimization
I stochastic gradient methods and variants
I second order methods and Hessian approximations
I asynchronous distributed optimization

I kernel methods
I Reproducing kernel Hilbert spaces
I Nystrom approximations
I Random features
I neural networks and Neural Tangent Kernel

I information-theoretic methods
I Error-resilient computations via error-correcting codes
I Lower-bounds on random projections



For details see Canvas!

Any questions?



Overview of topics and applications



Scale of data

I Every day, we create 2.5 billion gigabytes of data

I Data stored grows 4x faster than world economy (Mayer-Schonberger)
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Deep learning revolution



Big data matrices
I n ⇥ d datamatrix

An

d

I Small: we can look at the data and find solutions easily
I Medium: Fits into RAM and one can run computations in

reasonable time
I Large: Doesn’t easily fit into RAM. One can’t relatively easily

run computations.



Typical data matrices

I Rectangular data (object-feature data): n objects, each of
which are described by d features, e.g., document-term data,
people-SNPs data.

I Correlation matrices

I Kernels and similarity matrices

I Laplacians or Adjacency matrices of graphs.

I Discretizations of dynamical systems, ODEs and PDEs

I Constraint matrices

I ...



Typical data matrices

I Rectangular data:

essentially a two-dimensional matrix with rows indicating
records (cases) and columns indicating features (variables)

I Example: Airline dataset

depart arrive origin dest dist weather delay cancelled

00:00:01 13:35:01 RNO LAS 345 0 1
07:20:01 08:40:01 SFO SAN 447 40 0
07:25:01 10:15:01 OAK PHX 646 0 0
07:30:01 08:30:01 OAK BUR 325 0 0

...



in machine learning, statistics and signal processing

I More data points typically increase the accuracy of models
! large scale matrix computation and optimization problems

e.g. matrix multiplication, matrix factorization, singular value
decomposition, convex optimization, non-convex
optimization...

Can we reduce the data volume with minimal loss of

information ?
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Matrix Computations

I Data matrix A 2 R
n⇥d where n, d are extremely large

Examples:

I Airline dataset (120GB) n = 120⇥ 106, d = 28
Flight arrival and departure details from 1987 to 2008

I Imagenet dataset (1.31TB) n = 14⇥ 106, d = 2⇥ 105

14 Million images for visual recognition

[US Department of Transportation]
[Deng et al. 2009]
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Approximate Matrix Multiplication

I How to approximate the matrix product AB fast ?



Least Squares Problems

Least squares
min
x

kAx � yk2

[Gauss, 1795]

variable

response
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Randomized Sketching

An

d



Randomized Sketching

An

d

Sm SA= m

d



Randomized Least Squares Solvers

I A : n ⇥ d feature matrix, and y : n ⇥ 1 response vector

I Original problem OPT = min
x2C

kAx � yk2| {z }
I Randomized approximation min

x2C
kÃx � ỹk2| {z }

I Ã and ỹ are smaller approximations



QR decomposition

I The Gram–Schmidt process takes a finite, linearly independent
set of vectors v1, ..., vn 2 Rd generates an orthogonal set
u1, ..., uk 2 Rd that spans the same n-dimensional subspace.



QR decomposition

I The Gram–Schmidt process takes a finite, linearly independent
set of vectors v1, ..., vn 2 Rd generates an orthogonal set
u1, ..., uk 2 Rd that spans the same n-dimensional subspace.

I complexity O(dn2)

I randomized algorithm complexity ⇡ O(dn)

produces an approximately orthogonal basis



Low-rank matrix approximations

I Singular Value Decomposition (SVD)

I A = U⌃V T

I takes O(nd2) time for A 2 R
n⇥d

I best rank-k approximation is Ak := Uk⌃kV
T
k =

Pk
i=1 �iuiv

T
i

I kA� Akk2  �k+1



Randomized low-rank matrix approximations

I Randomized (SVD)

I approximation C (e.g. a subset of the columns of A)

I AA
T ⇡ CC

T

I Ãk = CC
†
A is a randomized rank-k approximation

I kA� Ãkk22  �
2
k+1 + ✏kAk22



Iterative Methods

I Gradient descent and momentum acceleration

I Iterative sketching methods

I Conjugate gradient

I Preconditioning

I Sparse linear systems

I Stochastic Gradient Descent

I Variance reduction

I Adaptive gradient methods: Adagrad, ADAM



Newton’s Method

min
x2C

g(x)

x
t+1 = argmin

x2C
hrg(x t), x � x

ti+ 1

2
(x � x

t)Tr2
g(x t)(x � x

t)



Gradient Descent vs Newton’s Method
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Gradient Descent vs Newton’s Method
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Randomized Newton’s Method
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I r̃2
g(x t) ⇡ r2

g(x t) is an approximate Hessian



Randomized Newton’s Method

min
x2C

g(x)

x
t+1 = argmin

x2C
hrg(x t), x � x

ti+ 1

2
(x � x

t)T r̃2
g(x t)(x � x

t)

I r̃2
g(x t) ⇡ r2

g(x t) is an approximate Hessian

Diagonal, subsampled, low-rank approximations yield

I Adagrad, ADAM

I Stochastic Variance Reduced Gradient (SVRG)

I Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm



Linear Programming

I LP in standard form where A 2 R
n⇥d

min
Axb

c
T
x

I Log barrier

minx µcT x �
nX

i=1

log(bi � a
T
i x)

I Hessian A
T
diag

⇣
1

(bi�aTi x)
2

⌘
A takes O(nd2) operations
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Exact Newton

Xn

i=1

log(bi���aiT�x)

c�

c
T�
x�¦

min� cT�
x

Axb

µ



Interior Point Methods for Linear Programming

I Hessian of f (x) = c
T
x �

Pn
i=1 log(bi � a

T
i x)

r2
f (x) = A

T
diag

✓
1

(bi � aTi x)
2

◆
A ,

I Root of the Hessian

(r2
f (x))1/2 = diag

✓
1

|bi � aTi x |

◆
A ,

I Sketch of the Hessian

S
t(r2

f (x))1/2 = S
t
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✓
1

|bi � aTi x |

◆
A

takes O(md
2) operations



Interior Point Methods for Linear Programming

I Hessian of f (x) = c
T
x �

Pn
i=1 log(bi � a

T
i x)

r2
f (x) = A

T
diag

✓
1

(bi � aTi x)
2

◆
A ,

I Root of the Hessian

(r2
f (x))1/2 = diag

✓
1

|bi � aTi x |

◆
A ,

I Sketch of the Hessian

S
t(r2

f (x))1/2 = S
t
diag

✓
1

|bi � aTi x |

◆
A

takes O(md
2) operations



Interior Point Methods for Linear Programming

I Hessian of f (x) = c
T
x �

Pn
i=1 log(bi � a

T
i x)

r2
f (x) = A

T
diag

✓
1

(bi � aTi x)
2

◆
A ,

I Root of the Hessian

(r2
f (x))1/2 = diag

✓
1

|bi � aTi x |

◆
A ,

I Sketch of the Hessian

S
t(r2

f (x))1/2 = S
t
diag

✓
1

|bi � aTi x |

◆
A

takes O(md
2) operations



Exact Newton
Newton Sketch

Xn

i=1

log(bi���aiT�x)

c�

c
T�
x�¦�

min� cT�
x

Axb



Trial 1 Trial 2 Trial 3

Exact Newton
Newton Sketch

(a) sketch size m = d

(b) sketch size m = 4d
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High dimensional problems n ⌧ d

I x
t+1 = Axt + But , t = 1, ...,T

I minimum fuel control from 0 ! xf

min
u

kuk1

s.t. [ B AB A
2
B · · · ]u = xf

I nT decision variables

I We can apply sampling and sketching for the variables
u 2 RnT

I Basic idea: dual linear program has nT constraints
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I Kernel matrices
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e.g., Gaussian kernel Kij = e
� 1
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Kernel methods
I Kernel matrices

given data points x1, ..., xn 2 Rd

e.g., Gaussian kernel Kij = e
� 1

�2 kxi�xjk22

I large n ⇥ n square matrices

Kn

S SK=
n

log 𝑛
n



Large Graphs

I Adjacency matrix or Laplacian

I Examples: a gene network and a co-authorship network graph



Sampling Graphs

I Random sampling graphs



Non-convex Optimization Problems

I In general, very di�cult to solve globally

I Need to make further assumptions



Non-convex Optimization Problems

min
x

nX

i=1

(fx(ai )� yi )
2



Non-convex Optimization Problems

min
x

nX

i=1

(fx(ai )� yi )
2

! Heuristic: Gauss-Newton method

xt+1 = argmin
x

k fxt (A) + Jtx| {z }
Taylor’s approx for fx

�yk22

where (Jt)ij =
@
@xj

fx(ai ) is the Jacobian matrix

I Jacobian can be sampled for faster computations
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