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Randomized Linear Algebra and Optimization
Lecture 10: Leverage Scores and Basic Inequality
Method



Projected Least Squares Problems

> Left-sketching

Form SA and Sb where S € R™*" is a random projection
matrix

» Solve the smaller problem

min ||SAx — Sb||3
x€R9

» using any classical method.

Direct method complexity md?



Basic Inequality Method

We minimize X = arg min ||S(Ax — b)||3

>

> x5 minimizes ||Ax — b||3
» How far is X from x; 57
>

Step 1. Establish two optimality (in)equalities for these
variables

|Ax.s — b||3 < ||Ax" — b)||3 for any X/, i.e., AT(Ax s — b) =0
IS(A% = b)|3 < [|S(AxLs — b)I3

vy



Basic Inequality Method

» We minimize X = arg min ||S(Ax — b)||3

> x5 minimizes ||Ax — b||3

» How far is X from x; 57

» Step 1. Establish two optimality (in)equalities for these
variables

> ||Ax s — b||3 < ||Ax" — b)||3 for any X/, i.e., AT(Ax s — b) =0

> |S(A% — b)I3 < IS(Axes — b3

> Step 2. Define error A = X — x; s and re-write these
inequalities in terms of §

> |SAA|2 < 2617 (STS — 1AA
> Step 3. Argue S'S =~/



Basic Inequality Method
> |SAA|2 < 2617 (STS — 1)AA
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||5AA||22 . 1' — max ||5U22||2 _ 1'
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Basic Inequality Method
> |SAA|2 < 2617 (STS — 1)AA

2 2
||5AA||22 . 1) — max ||5U22||2 _ 1'
A | [AA] = | |23
T V4
= max (UTSTSU — 1)——
= [zl 1212

=02, (UTSTSU - 1)

max

» Approximate matrix multiplication (AMM):

omax(UTSTSU -1 < JUTSTSU—-UTU||F < €|UTU|%
/
» This is called a Subspace Embedding

we can rescale € to get omax(UTSTSU — 1) < ¢ for
appropriate m



Basic Inequality Method

> |SAA|2 < 2617 (STS — 1)AA
» Now consider the right handside

—2btT(STS — NUUTAA < 2||b-T(STS — NUUT ||»]|AA]|

> AMM again: ||[b+STSUUT — b-UUT||F <
SIBHEIVUT F < o f(as)Vd
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Basic Inequality Method

> |SAA|2 < 2617 (STS — 1)AA
» Summarizing two bounds:

ISAA 3
> (1) maxA‘ HAAII§2 -1 <<

> (2) 2617 (STS — NAA < = f(xis) V| AL,
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> |SAA|2 < 2617 (STS — 1)AA
» Summarizing two bounds:
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> (1) maxa HAAH%Z -1 <<
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Basic Inequality Method

> |SAA|2 < 2617 (STS — 1)AA
» Summarizing two bounds:

Ishlt | <o
— <e€
[AA3 -

v

(1) maxa
> (2) 2617 (STS — NAA < = f(xis) V| AL,

(1) implies —¢'[|AA|13 < [[SAA[Z — [|AA|5 < €| AA3
hence (1 — ¢')[|AA3 < [[SAA]3

Plugging in: (1 — €)I|AA[3 < /=f(xs)Vd|AA||2

A2 < T55f (xus) V2

v




Leverage Scores

> Intuition: Approximate Matrix Multiplication for UT U i.e,
|UTSTSU —UTU|r=||UTSTSU —I||f < ¢

implies Least Squares cost approximation



Leverage Scores

vvyyy

v

Intuition: Approximate Matrix Multiplication for UT U i.e,
|UTSTSU —UTU|r=||UTSTSU —I||f < ¢

implies Least Squares cost approximation

We can pick a sampling matrix S

Importance sampling: proportional to the rows norms of U
Leverage scores: {; := ||uj||3 for i =1,...n
Soili=>uill3 = |U|% =trUTU = trly = d when Ais
full column rank

Sampling probabilities: p; = 3 u;||3

Z:,'Pi:1

Can be non-uniform or uniform A = [/; 0]



Fast Johnson Lindenstrauss Transform

v

Let H be the n x n Hadamard matrix
Generate an n x n diagonal matrix of random +1 uniform
signs

Uniform m x n sub-sampling matrix P scaled with \/—\/g

Let S = PHD.
Note that ESTS =/



FJLT Preconditions Leverage Scores

» Fix a set X of n vectors in d-dimension. With high probability

maxxex ||HDX ||oo < %



FJLT Preconditions Leverage Scores

» Fix a set X of n vectors in d-dimension. With high probability

maxyex [|HDX [0 < 1/ 280
Apply HD to data A

» PHDA is uniformly sampled HDA
Leverage scores of HDU are near uniform

uniform sampling works!



Questions?



