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Method



Projected Least Squares Problems

I Left-sketching

Form SA and Sb where S ∈ Rm×n is a random projection
matrix

I Solve the smaller problem

min
x∈Rd

‖SAx − Sb‖2
2

I using any classical method.

Direct method complexity md2



Basic Inequality Method

I We minimize x̃ = arg min ‖S(Ax − b)‖2
2

I xLS minimizes ‖Ax − b‖2
2

I How far is x̃ from xLS?

I Step 1. Establish two optimality (in)equalities for these
variables

I ‖AxLS − b‖2
2 ≤ ‖Ax ′− b)‖2

2 for any x ′, i.e., AT (AxLS − b) = 0

I ‖S(Ax̃ − b)‖2
2 ≤ ‖S(AxLS − b)‖2

2

I Step 2. Define error ∆ = x̃ − xLS and re-write these
inequalities in terms of δ

I ‖SA∆‖2
2 ≤ 2b⊥

T
(STS − I )A∆

I Step 3. Argue STS ≈ I
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Basic Inequality Method

I ‖SA∆‖2
2 ≤ 2b⊥

T
(STS − I )A∆

max
∆

∣∣∣∣‖SA∆‖2
2

‖A∆‖2
2

− 1

∣∣∣∣ = max
z

∣∣∣∣‖SUz‖2
2

‖z‖2
2

− 1

∣∣∣∣
= max

z

∣∣∣∣ zT

‖z‖2
(UTSTSU − I )

z

‖z‖2

∣∣∣∣
= σ2

max(UTSTSU − I )

I Approximate matrix multiplication (AMM):

σmax(UTSTSU − I ) ≤ ‖UTSTSU − UTU︸ ︷︷ ︸
I

‖F ≤ ε‖UTU‖2
F

I This is called a Subspace Embedding

we can rescale ε to get σmax(UTSTSU − I ) ≤ ε for
appropriate m
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Basic Inequality Method

I ‖SA∆‖2
2 ≤ 2b⊥

T
(STS − I )A∆

I Now consider the right handside

= 2b⊥
T

(STS − I )UUTA∆ ≤ 2‖b⊥T (STS − I )UUT‖2‖A∆‖

I AMM again: ‖b⊥STSUUT − b⊥UUT‖F ≤
ε√
m
‖b⊥‖F‖UUT‖F ≤ ε√

m
f (xLS)

√
d
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Basic Inequality Method

I ‖SA∆‖2
2 ≤ 2b⊥

T
(STS − I )A∆

I Summarizing two bounds:

I (1) max∆

∣∣∣‖SA∆‖2
2

‖A∆‖2
2
− 1
∣∣∣ ≤ ε′

I (2) 2b⊥
T

(STS − I )A∆ ≤ ε√
m
f (xLS)

√
d‖A∆‖2

(1) implies −ε′‖A∆‖2
2 ≤ ‖SA∆‖2

2 − ‖A∆‖2
2 ≤ ε′‖A∆‖2

2

hence (1− ε′)‖A∆‖2
2 ≤ ‖SA∆‖2

2

I Plugging in: (1− ε′)‖A∆‖2
2 ≤ ε√

m
f (xLS)

√
d‖A∆‖2

‖A∆‖2 ≤ ε
1−ε′ f (xLS)

√
d√
m
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Leverage Scores

I Intuition: Approximate Matrix Multiplication for UTU i.e,

‖UTSTSU − UTU‖F = ‖UTSTSU − I‖F ≤ ε
implies Least Squares cost approximation

I We can pick a sampling matrix S

I Importance sampling: proportional to the rows norms of U

I Leverage scores: `i := ‖ui‖2
2 for i = 1, ...n

I
∑

i `i =
∑

i ‖ui‖2
2 = ‖U‖2

F = trUTU = trId = d when A is
full column rank

I Sampling probabilities: pi = 1
d ‖ui‖

2
2∑

i pi = 1

I Can be non-uniform or uniform A = [I ; 0]
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Fast Johnson Lindenstrauss Transform

I Let H be the n × n Hadamard matrix

I Generate an n × n diagonal matrix of random ±1 uniform
signs

I Uniform m × n sub-sampling matrix P scaled with
√
n√
m

I Let S = PHD.

I Note that ESTS = I



FJLT Preconditions Leverage Scores

I Fix a set X of n vectors in d-dimension. With high probability

maxx∈X ‖HDX‖∞ ≤
√

log(n)
d

Apply HD to data A

I PHDA is uniformly sampled HDA

Leverage scores of HDU are near uniform

uniform sampling works!
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Questions?


