EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Feb 11 2020

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Randomized Linear Algebra and Optimization Lecture 11: Spectral Approximation, Subspace Embedding and Fast JL Transforms

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Approximating Matrices

Approximate matrix product $A^TA \approx A^TS^TSA$ sampling based vs projection based methods Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A

2

\blacktriangleright Sampling based

- \blacktriangleright Uniform
- Row norm scores $p_i = \frac{||a_i||_2^2}{\sum_j ||a_j||_2^2}$

Leverage scores $p_i = \frac{||a_i||_2^2}{\sum_i ||a_i||_2^2}$

$$
\sum_{i=1}^{\infty} \text{Leverage scores } p_i = \frac{\|u_i\|_2}{\sum_j \|u_j\|}
$$

Approximating Matrices

Approximate matrix product $A^TA \approx A^TS^TSA$ sampling based vs projection based methods Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A

\blacktriangleright Sampling based

- \blacktriangleright Uniform
- Row norm scores $p_i = \frac{\|a_i\|_2^2}{\sum_j \|a_j\|_2^2}$ $\|u_i\|$ 2

$$
\blacktriangleright
$$
 Leverage scores $p_i = \frac{\|u_i\|_2^2}{\sum_j \|u_j\|}$

\blacktriangleright Projection based

- Gaussian $N(0, 1)$ random projection
- \blacktriangleright Rademacher ± 1 random projection
- \blacktriangleright Haar (uniform orthogonal) random projection
- ▶ Sparse Johnson Lindenstrauss (CountSketch) Embeddings

2 2

Fast Johnson Lindenstrauss (Randomized Hadamard) Transform

Leverage Scores

- \blacktriangleright Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A implies Least Squares cost approximation
- Importance sampling: proportional to the rows norms of U
- **D** Leverage scores: $\ell_i := ||u_i||_2^2$ for $i = 1, ...n$
- $\sum_i \ell_i = \sum_i ||u_i||_2^2 = ||U||_F^2 = trU^T U = trI_d = d$ when A is full column rank

► Sampling probabilities:
$$
p_i = \frac{1}{d} ||u_i||_2^2
$$

 $\sum_i p_i = 1$

- \triangleright Can be non-uniform or uniform $A = [I; 0]$
- Approximate Matrix Multiplication for U^TU i.e, $\|U^{\mathcal{T}} S^{\mathcal{T}} S U - U^{\mathcal{T}} U\|_{\mathsf{F}} = \|U^{\mathcal{T}} S^{\mathcal{T}} S U - I\|_{\mathsf{F}} \leq \epsilon$

- \blacktriangleright Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A
- \triangleright S be the leverage score sampling matrix
- Approximate Matrix Multiplication for $U^T U$ i.e,

$$
||UTSTSU - UTU||F = ||UTSTSU - I||F \le \epsilon
$$
 (1)

KID KA KERKER KID KO

- \blacktriangleright Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A
- \triangleright S be the leverage score sampling matrix
- Approximate Matrix Multiplication for $U^T U$ i.e,

$$
||UTSTSU - UTU||F = ||UTSTSU - I||F \le \epsilon
$$
 (1)

KID KA KERKER KID KO

► (1) implies
$$
\sigma_{\text{max}}(U^T S^T SU - I) \leq \epsilon
$$
 Singular values of a symmetric matrix are the absolute values of the eigenvalues

- \blacktriangleright Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A
- \triangleright S be the leverage score sampling matrix
- Approximate Matrix Multiplication for $U^T U$ i.e,

$$
||UTSTSU - UTU||F = ||UTSTSU - I||F \le \epsilon
$$
 (1)

KID KA KERKER KID KO

► (1) implies
$$
\sigma_{\text{max}}(U^T S^T SU - I) \leq \epsilon
$$
 Singular values of a symmetric matrix are the absolute values of the eigenvalues

► max_{i=1,..d}
$$
\left| \lambda_i \left(U^T S^T S U - I \right) \right| \le \epsilon
$$

\n► (1) implies $1 - \epsilon \le \lambda_i \left(U^T S^T S U \right) \le 1 + \epsilon$ for all *i*

- \blacktriangleright Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A
- \triangleright S be the leverage score sampling matrix
- Approximate Matrix Multiplication for $U^T U$ i.e,

$$
||UTSTSU - UTU||F = ||UTSTSU - I||F \le \epsilon
$$
 (1)

► (1) implies
$$
\sigma_{\text{max}}(U^T S^T SU - I) \leq \epsilon
$$
 Singular values of a symmetric matrix are the absolute values of the eigenvalues

$$
\sum_{i=1...d} \max_{i=1...d} \left| \lambda_i \left(U^T S^T S U - I \right) \right| \le \epsilon
$$

- ► [\(1\)](#page-5-0) implies $1-\epsilon \leq \lambda_i \Big(U^{\mathcal{T}} S^{\mathcal{T}} S U \Big) \leq 1+\epsilon$ for all i
- \blacktriangleright $(A^T S^T S A)^{-1}$ exists whenever $(A^T A)^{-1}$ exists
- \blacktriangleright sketched least squares solution arg m[i](#page-4-0)n $_{\mathsf{x}}\left\Vert \mathsf{S} \mathsf{A} \mathsf{x} - \mathsf{S} \mathsf{b} \right\Vert _{2} = (\mathsf{A}^{\mathsf{T}} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{A})^{-1} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{b}$ $_{\mathsf{x}}\left\Vert \mathsf{S} \mathsf{A} \mathsf{x} - \mathsf{S} \mathsf{b} \right\Vert _{2} = (\mathsf{A}^{\mathsf{T}} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{A})^{-1} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{b}$ $_{\mathsf{x}}\left\Vert \mathsf{S} \mathsf{A} \mathsf{x} - \mathsf{S} \mathsf{b} \right\Vert _{2} = (\mathsf{A}^{\mathsf{T}} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{A})^{-1} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{b}$ $_{\mathsf{x}}\left\Vert \mathsf{S} \mathsf{A} \mathsf{x} - \mathsf{S} \mathsf{b} \right\Vert _{2} = (\mathsf{A}^{\mathsf{T}} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{A})^{-1} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{b}$ $_{\mathsf{x}}\left\Vert \mathsf{S} \mathsf{A} \mathsf{x} - \mathsf{S} \mathsf{b} \right\Vert _{2} = (\mathsf{A}^{\mathsf{T}} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{A})^{-1} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{b}$ $_{\mathsf{x}}\left\Vert \mathsf{S} \mathsf{A} \mathsf{x} - \mathsf{S} \mathsf{b} \right\Vert _{2} = (\mathsf{A}^{\mathsf{T}} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{A})^{-1} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{b}$ $_{\mathsf{x}}\left\Vert \mathsf{S} \mathsf{A} \mathsf{x} - \mathsf{S} \mathsf{b} \right\Vert _{2} = (\mathsf{A}^{\mathsf{T}} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{A})^{-1} \mathsf{S}^{\mathsf{T}} \mathsf{S} \mathsf{b}$ is [w](#page-9-0)[ell](#page-0-0) [d](#page-17-0)[efi](#page-0-0)[ne](#page-17-0)[d](#page-0-0)

Preserving Spectral Properties

$$
||UTSTSU - UTU||F = ||UTSTSU - I||F \le \epsilon
$$
 (2)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright also implies that

$$
(1-\epsilon) \|Ax\|_2^2 \le \|S Ax\|_2^2 \le (1+\epsilon) \|Ax\|_2^2
$$

for all $x \in \mathbb{R}^d$

Johnson-Lindenstrauss embedding property for the whole subspace range (A)

 \triangleright we utilized this in the basic inequality method

Interpretation of Leverage Scores: Subspace Embedding

$$
||UTSTSU – UTU||F = ||UTSTSU – I||F \le \epsilon
$$

implies

$$
(1-\epsilon) \|Ax\|_2^2 \le \|S Ax\|_2^2 \le (1+\epsilon) \|Ax\|_2^2
$$

KORKAR KERKER ST VOOR

for all $x \in \mathbb{R}^d$

► Weyl's Inquality $|\lambda_i(M) - \lambda_i(M')| \le \sigma_{\max}(M - M')$ for all *i* $\blacktriangleright |\lambda_i(A^T S^T SA) - \lambda_i(A^T A)| \leq \epsilon$, i.e., all eigenvalues are

approximately preserved

Interpretation of Leverage Scores: Sensitivity of the loss function

Kロトメ部トメミトメミト ミニのQC

Consider
$$
||Ax - b||_2^2 = \sum_i (a_i^T x - b_i)^2
$$

suppose that $b = Ax^*$ for simplicity

I Consider the worst-case ratio

Fast Johnson Lindenstrauss Transform

Exect H denote the $n \times n$ Hadamard Transform matrix constructed as follows

$$
H_2 := \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]
$$

$$
H_{n+1} = \left[\begin{array}{cc} H_n & H_n \\ H_n & -H_n \end{array} \right]
$$

let D be an $n \times n$ diagonal matrix of random ± 1 uniform signs ▶ Uniform $m \times n$ sub-sampling matrix P scaled with $\frac{\sqrt{n}}{\sqrt{m}}$ let $S = \frac{1}{\sqrt{2}}$ $\frac{1}{n}$ PHD.

► Note that
$$
\mathbb{E} S^T S = I
$$
 since $DH^T H D = nI$ and $\mathbb{E} P^T P = I$

Fast Johnson Lindenstrauss Transform Analysis

► Leverage scores of a matrix $A = U\Sigma V^T$ are given by $\ell_i = \|U^T e_i\|_2^2 = e_i^T U U^T e_i$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Another expression: $\ell_i = e_i^T A (A^T A)^{-1} A^T e_i$

Fast Johnson Lindenstrauss Transform Analysis

- ► Leverage scores of a matrix $A = U\Sigma V^T$ are given by $\ell_i = \|U^T e_i\|_2^2 = e_i^T U U^T e_i$
- Another expression: $\ell_i = e_i^T A (A^T A)^{-1} A^T e_i$
- ► Compare with leverage scores of $\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ HDA denoted by $\tilde{\ell}_i$

$$
\tilde{\ell}_i := e_i^{\mathsf{T}} HDA(A^{\mathsf{T}} D H^{\mathsf{T}} HDA)^{-1} A^{\mathsf{T}} D H^{\mathsf{T}} e_i \tag{3}
$$

$$
=\frac{1}{n}e_i^{\mathsf{T}} HDA(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}DH^{\mathsf{T}}e_i
$$
\n(4)

$$
=\frac{1}{n}e_i^{\mathsf{T}}\mathsf{HDUU}^{\mathsf{T}}\mathsf{DH}^{\mathsf{T}}e_i\tag{5}
$$

$$
=\frac{1}{n}h_i^T D U U^T Dh_i
$$
\n(6)

ightharpoonup where we have used $H^TH = nI$ \blacktriangleright $\tilde{\ell}_i$ is distributed as $\frac{1}{n}r^{\mathsf{T}}UU^{\mathsf{T}}r$ where r is i.i.d. ± 1 \blacktriangleright $\mathbb{E}^{\frac{1}{2}}$ $\frac{1}{n}$ r^TUU^Tr = $\frac{a}{n}$ n

Fast Johnson Lindenstrauss Transform Analysis

▶ Chernoff's method (as in Chernoff Bound) implies that

$$
\mathbb{P}\left[\left|\frac{1}{n}h_i^TDu_j\right|\geq t\right]\leq 2e^{-t^2n/2}
$$

for every fixed i and j .

 \blacktriangleright Applying union bound

$$
\tilde{\ell}_i = \frac{1}{n} h_i^T D U U^T Dh_i \le \text{const } \frac{d \log(nd)}{n}
$$

with high probability note that $\ell_i = \frac{d}{n}$ $\frac{a}{n}$ for all *i* when leverage scores are exactly uniform

Randomized Hadamard Transform HD preconditions leverage scores

Apply HD to data A

 \blacktriangleright PHDA is a uniformly subsampled version HDA Leverage scores of $\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ HDU are near uniform uniform sampling $\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ HDA works! in other works SA where $S=\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ PHD is a subspace embedding

Questions?

KOKK@KKEKKEK E 1990