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Approximating Matrices

Approximate matrix product ATA ≈ ATSTSA

sampling based vs projection based methods

Let A = UΣV T be the Singular Value Decomposition of A

I Sampling based
I Uniform
I Row norm scores pi =

‖ai‖2
2∑

j ‖aj‖2
2

I Leverage scores pi =
‖ui‖2

2∑
j ‖uj‖2

2

I Projection based
I Gaussian N(0, 1) random projection
I Rademacher ±1 random projection
I Haar (uniform orthogonal) random projection
I Sparse Johnson Lindenstrauss (CountSketch) Embeddings
I Fast Johnson Lindenstrauss (Randomized Hadamard)

Transform
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Leverage Scores

I Let A = UΣV T be the Singular Value Decomposition of A

implies Least Squares cost approximation

I Importance sampling: proportional to the rows norms of U

I Leverage scores: `i := ‖ui‖22 for i = 1, ...n

I
∑

i `i =
∑

i ‖ui‖22 = ‖U‖2F = trUTU = trId = d when A is
full column rank

I Sampling probabilities: pi = 1
d ‖ui‖

2
2∑

i pi = 1

I Can be non-uniform or uniform A = [I ; 0]

I Approximate Matrix Multiplication for UTU i.e,

‖UTSTSU − UTU‖F = ‖UTSTSU − I‖F ≤ ε



Interpretation of Leverage Scores: Spectral Approximation

I Let A = UΣV T be the Singular Value Decomposition of A

I S be the leverage score sampling matrix

I Approximate Matrix Multiplication for UTU i.e,

‖UTSTSU − UTU‖F = ‖UTSTSU − I‖F ≤ ε (1)

I (1) implies σmax

(
UTSTSU − I

)
≤ ε

Singular values of a symmetric matrix are the absolute values
of the eigenvalues

I maxi=1,..d

∣∣∣λi(UTSTSU − I
)∣∣∣ ≤ ε

I (1) implies 1− ε ≤ λi
(
UTSTSU

)
≤ 1 + ε for all i

I (ATSTSA)−1 exists whenever (ATA)−1 exists

I sketched least squares solution
arg minx ‖SAx − Sb‖2 = (ATSTSA)−1STSb is well defined
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Preserving Spectral Properties

‖UTSTSU − UTU‖F = ‖UTSTSU − I‖F ≤ ε (2)

I also implies that

(1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22
for all x ∈ Rd

Johnson-Lindenstrauss embedding property for the whole
subspace range(A)

I we utilized this in the basic inequality method



Interpretation of Leverage Scores: Subspace Embedding

‖UTSTSU − UTU‖F = ‖UTSTSU − I‖F ≤ ε

implies

(1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22
for all x ∈ Rd

I Weyl’s Inquality
∣∣λi (M)− λi (M ′)

∣∣ ≤ σmax

(
M −M ′

)
for all i

I
∣∣λi (ATSTSA)− λi (ATA)

∣∣ ≤ ε, i.e., all eigenvalues are
approximately preserved



Interpretation of Leverage Scores: Sensitivity of the loss
function

I Consider ‖Ax − b‖22 =
∑

i (a
T
i x − bi )

2

suppose that b = Ax∗ for simplicity

I Consider the worst-case ratio



Fast Johnson Lindenstrauss Transform
I Let H denote the n × n Hadamard Transform matrix

constructed as follows

H2 :=

[
1 1
1 −1

]
Hn+1 =

[
Hn Hn

Hn −Hn

]
I let D be an n× n diagonal matrix of random ±1 uniform signs
I Uniform m × n sub-sampling matrix P scaled with

√
n√
m

I Let S = 1√
n
PHD.

I Note that ESTS = I since DHTHD = nI and EPTP = I



Fast Johnson Lindenstrauss Transform Analysis

I Leverage scores of a matrix A = UΣV T are given by

`i = ‖UT ei‖22 = eTi UUT ei
I Another expression: `i = eTi A(ATA)−1AT ei

I Compare with leverage scores of 1√
n
HDA denoted by ˜̀

i

˜̀
i : = eTi HDA(ATDHTHDA)−1ATDHT ei (3)

=
1

n
eTi HDA(ATA)−1ATDHT ei (4)

=
1

n
eTi HDUUTDHT ei (5)

=
1

n
hTi DUU

TDhi (6)

I where we have used HTH = nI

I ˜̀
i is distributed as 1

n r
TUUT r where r is i.i.d. ±1

I E 1
n r

TUUT r = d
n
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Fast Johnson Lindenstrauss Transform Analysis

I Chernoff’s method (as in Chernoff Bound) implies that

P
[∣∣1
n
hTi Duj

∣∣ ≥ t

]
≤ 2e−t

2n/2

for every fixed i and j .

I Applying union bound

˜̀
i =

1

n
hTi DUU

TDhi ≤ const
d log(nd)

n

with high probability

note that `i = d
n for all i when leverage scores are exactly

uniform



Randomized Hadamard Transform HD preconditions
leverage scores

Apply HD to data A

I PHDA is a uniformly subsampled version HDA

Leverage scores of 1√
n
HDU are near uniform

uniform sampling 1√
n
HDA works!

in other works SA where S = 1√
n
PHD is a subspace

embedding



Questions?


