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Approximating Matrices

Approximate matrix product ATA~ ATSTSA
sampling based vs projection based methods
Let A= UZVT be the Singular Value Decomposition of A

» Sampling based

» Uniform
» Row norm scores p; =
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Approximating Matrices

Approximate matrix product ATA~ ATSTSA
sampling based vs projection based methods
Let A= UZVT be the Singular Value Decomposition of A

» Sampling based

» Uniform
» Row norm scores p; =
Pi= Tl

» Leverage scores p; = AL
j Hjll2

» Projection based
» Gaussian N(0,1) random projection
» Rademacher £1 random projection
» Haar (uniform orthogonal) random projection
» Sparse Johnson Lindenstrauss (CountSketch) Embeddings
» Fast Johnson Lindenstrauss (Randomized Hadamard)
Transform



Leverage Scores

» Let A= UZ VT be the Singular Value Decomposition of A
implies Least Squares cost approximation

» Importance sampling: proportional to the rows norms of U

> Leverage scores: {; := ||u;||3 for i =1,...n

> S b= uil3 = |U|I2 = trUTU = trly = d when A is
full column rank

> Sampling probabilities: p; = Z||u;||3
Z,’Pi =1

» Can be non-uniform or uniform A = [/;0]

> Approximate Matrix Multiplication for UT U i.e,
|UTSTSU —UTU|F=||UTSTSU —I||f < ¢



Interpretation of Leverage Scores: Spectral Approximation

> Let A= UX VT be the Singular Value Decomposition of A
» S be the leverage score sampling matrix
» Approximate Matrix Multiplication for UT U i.e,

|UTSTSU - UTU|[F=|lUTSTSU—I|p<e (1)



Interpretation of Leverage Scores: Spectral Approximation

> Let A= UX VT be the Singular Value Decomposition of A
» S be the leverage score sampling matrix
» Approximate Matrix Multiplication for UT U i.e,

|UTSTSU - UTU|[F=|lUTSTSU—I|p<e (1)

» (1) implies 0 max (UTSTSU — /) <e
Singular values of a symmetric matrix are the absolute values
of the eigenvalues



Interpretation of Leverage Scores: Spectral Approximation

> Let A= UX VT be the Singular Value Decomposition of A
» S be the leverage score sampling matrix
» Approximate Matrix Multiplication for UT U i.e,

|UTSTSU - UTU|[F=|lUTSTSU—I|p<e (1)
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(1) implies 0 max (UTSTSU — /) <e
Singular values of a symmetric matrix are the absolute values
of the eigenvalues
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Interpretation of Leverage Scores: Spectral Approximation

>
>
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Let A= UZVT be the Singular Value Decomposition of A
S be the leverage score sampling matrix
Approximate Matrix Multiplication for UT U i.e,

|UTSTSU - UTU|[F=|lUTSTSU—I|p<e (1)

(1) implies 0 max (UTSTSU — /) <e
Singular values of a symmetric matrix are the absolute values
of the eigenvalues

A,-(UTSTSU— /)‘ <e

maX;=1,..d

> (1) implies 1 — ¢ < >\,~<UTSTSU) <1+ eforalli

> (ATSTSA)™! exists whenever (AT A)~1 exists

sketched least squares solution
arg miny ||SAx — Sb||> = (ATSTSA)"1S7 Sh is well defined



Preserving Spectral Properties

|UTSTSU - UTU||F=||UTSTSU—I||r < (2)

» also implies that

(1= )lIAx]I3 < [ISAX[|3 < (1 + €)| Ax[I3

for all x € R

Johnson-Lindenstrauss embedding property for the whole
subspace range(A)

> we utilized this in the basic inequality method



Interpretation of Leverage Scores: Subspace Embedding

|UTSTSU - UTU|lp = ||UTSTSU—I||r <

implies

(1= )l Ax]2 < I SAX]I3 < (1 + €)||Ax]2
for all x € R?
> Weyl's Inquality |A\j(M) — Xi(M')| < omax(M — M') for all i

> [N(ATSTSA) — Ni(ATA)| <, ie., all eigenvalues are
approximately preserved



Interpretation of Leverage Scores: Sensitivity of the loss
function

> Consider ||[Ax — b||3 = >_.(a] x — b;)?
suppose that b = Ax™ for simplicity

» Consider the worst-case ratio



Fast Johnson Lindenstrauss Transform

>

vVvyyvyy

Let H denote the n x n Hadamard Transform matrix
constructed as follows

1 1
H2'_[1 -1

_ | Hn Ha
Hn+1 N |: Hn _Hn :|
let D be an n x n diagonal matrix of random +1 uniform signs
Uniform m x n sub-sampling matrix P scaled with i:q

o
Let S = %PHD.

Note that ESTS = I since DHTHD = nl and EPTP = |



Fast Johnson Lindenstrauss Transform Analysis
» Leverage scores of a matrix A= UXVT are given by
f,’ = ||UTe,-H§ = e,-TUUTe;
» Another expression: ¢; = el A(ATA) 1A ¢



Fast Johnson Lindenstrauss Transform Analysis
» Leverage scores of a matrix A= UXVT are given by
f,‘ = ||UTe,-H§ = e,-TUUTe;
» Another expression: ¢; = el A(ATA) 1A ¢

» Compare with leverage scores of %HDA denoted by /;

l; - = e HDA(ATDHTHDA) AT DH T ¢;
1
= ;e,-THDA(ATA)_lATDHTe;
= 1e,THDUUTDHTe,-
n

1
= ;h,-TDUUTDh,-

» where we have used HTH = nl
» 7, is distributed as LrTUUTr where risi.id. +1
> ELTuuTr=4

n



Fast Johnson Lindenstrauss Transform Analysis

» Chernoff’'s method (as in Chernoff Bound) implies that
1 r —t%n/2

for every fixed i and j.

» Applying union bound

1 |
7 = LhT DUUT Dhy < const 198(79)

"o n

with high probability

note that ¢; = % for all / when leverage scores are exactly
uniform



Randomized Hadamard Transform HD preconditions
leverage scores

Apply HD to data A
» PHDA is a uniformly subsampled version HDA
Leverage scores of ﬁHDU are near uniform

uniform sampling %HDA works!

in other works SA where § = %PHD is a subspace
embedding



Questions?



