EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Feb 11 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Randomized Linear Algebra and Optimization Lecture 11: Spectral Approximation, Subspace Embedding and Fast JL Transforms

Approximating Matrices

Approximate matrix product $A^T A \approx A^T S^T S A$ sampling based vs projection based methods Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A

Sampling based

- Uniform
- Row norm scores p_i = ||a_i||²₂
 \$\sum_{j} ||a_{j}||^{2}\$

 Leverage scores p_i = ||u_i||²₂
 \$\sum_{i} ||u_{i}||^{2}_{2}\$

Approximating Matrices

Approximate matrix product $A^T A \approx A^T S^T S A$ sampling based vs projection based methods Let $A = U \Sigma V^T$ be the Singular Value Decomposition of A

Sampling based

- Uniform
- Row norm scores p_i = ^{||a_i||²/₂}/_{∑_j ||a_j||²/₂}
 Leverage scores p_i = ^{||u_i||²/₂}/_{∑_i ||u_i||²/₂}

Projection based

- ► Gaussian N(0,1) random projection
- Rademacher ± 1 random projection
- Haar (uniform orthogonal) random projection
- Sparse Johnson Lindenstrauss (CountSketch) Embeddings
- Fast Johnson Lindenstrauss (Randomized Hadamard) Transform

Leverage Scores

- Let A = UΣV^T be the Singular Value Decomposition of A implies Least Squares cost approximation
- Importance sampling: proportional to the rows norms of U
- Leverage scores: $\ell_i := ||u_i||_2^2$ for i = 1, ..., n
- $\sum_i \ell_i = \sum_i ||u_i||_2^2 = ||U||_F^2 = trU^T U = trI_d = d$ when A is full column rank

Sampling probabilities:
$$p_i = \frac{1}{d} ||u_i||_2^2$$

 $\sum_i p_i = 1$

- Can be non-uniform or uniform A = [I; 0]
- Approximate Matrix Multiplication for $U^T U$ i.e, $\|U^T S^T S U - U^T U\|_F = \|U^T S^T S U - I\|_F \le \epsilon$

- Let $A = U\Sigma V^T$ be the Singular Value Decomposition of A
- ► S be the leverage score sampling matrix
- Approximate Matrix Multiplication for $U^T U$ i.e,

$$\|\boldsymbol{U}^{\mathsf{T}}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{U} - \boldsymbol{U}^{\mathsf{T}}\boldsymbol{U}\|_{\mathsf{F}} = \|\boldsymbol{U}^{\mathsf{T}}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{U} - \boldsymbol{I}\|_{\mathsf{F}} \le \epsilon \qquad (1)$$

- Let $A = U\Sigma V^T$ be the Singular Value Decomposition of A
- ► S be the leverage score sampling matrix
- Approximate Matrix Multiplication for $U^T U$ i.e,

$$\|U^{\mathsf{T}}S^{\mathsf{T}}SU - U^{\mathsf{T}}U\|_{\mathsf{F}} = \|U^{\mathsf{T}}S^{\mathsf{T}}SU - I\|_{\mathsf{F}} \le \epsilon \qquad (1)$$

- Let $A = U\Sigma V^T$ be the Singular Value Decomposition of A
- S be the leverage score sampling matrix
- Approximate Matrix Multiplication for $U^T U$ i.e,

$$\|U^{\mathsf{T}}S^{\mathsf{T}}SU - U^{\mathsf{T}}U\|_{\mathsf{F}} = \|U^{\mathsf{T}}S^{\mathsf{T}}SU - I\|_{\mathsf{F}} \le \epsilon \qquad (1)$$

► (1) implies
$$\sigma_{max} \left(U^T S^T S U - I \right) \le \epsilon$$

Singular values of a symmetric matrix are the absolute values of the eigenvalues

- Let $A = U\Sigma V^T$ be the Singular Value Decomposition of A
- S be the leverage score sampling matrix
- Approximate Matrix Multiplication for U^TU i.e,

$$\|U^{\mathsf{T}}S^{\mathsf{T}}SU - U^{\mathsf{T}}U\|_{\mathsf{F}} = \|U^{\mathsf{T}}S^{\mathsf{T}}SU - I\|_{\mathsf{F}} \le \epsilon \qquad (1)$$

► (1) implies
$$\sigma_{max} (U^T S^T S U - I) \le \epsilon$$

Singular values of a symmetric matrix are the absolute values of the eigenvalues

- ► (1) implies $1 \epsilon \le \lambda_i \left(U^T S^T S U \right) \le 1 + \epsilon$ for all *i*
- $(A^T S^T S A)^{-1}$ exists whenever $(A^T A)^{-1}$ exists
- ▶ sketched least squares solution arg min_x $||SAx - Sb||_2 = (A^T S^T S A)^{-1} S^T S b$ is well defined

Preserving Spectral Properties

$$\|U^{\mathsf{T}}S^{\mathsf{T}}SU - U^{\mathsf{T}}U\|_{\mathsf{F}} = \|U^{\mathsf{T}}S^{\mathsf{T}}SU - I\|_{\mathsf{F}} \le \epsilon$$
(2)

also implies that

$$(1-\epsilon) \|Ax\|_2^2 \le \|SAx\|_2^2 \le (1+\epsilon) \|Ax\|_2^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

for all $x \in \mathbb{R}^d$

Johnson-Lindenstrauss embedding property for the whole subspace range(A)

we utilized this in the basic inequality method

Interpretation of Leverage Scores: Subspace Embedding

$$\|U^{\mathsf{T}}S^{\mathsf{T}}SU - U^{\mathsf{T}}U\|_{\mathsf{F}} = \|U^{\mathsf{T}}S^{\mathsf{T}}SU - I\|_{\mathsf{F}} \le \epsilon$$

implies

$$(1-\epsilon) \|Ax\|_2^2 \le \|SAx\|_2^2 \le (1+\epsilon) \|Ax\|_2^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for all $x \in \mathbb{R}^d$

▶ Weyl's Inquality $|\lambda_i(M) - \lambda_i(M')| \le \sigma_{\max}(M - M')$ for all *i* ▶ $|\lambda_i(A^T S^T S A) - \lambda_i(A^T A)| \le \epsilon$, i.e., all eigenvalues are

approximately preserved

Interpretation of Leverage Scores: Sensitivity of the loss function

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Fast Johnson Lindenstrauss Transform

Let H denote the n × n Hadamard Transform matrix constructed as follows

$$H_2 := \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$H_{n+1} = \begin{bmatrix} H_n & H_n \\ H_n & -H_n \end{bmatrix}$$

▶ let D be an n×n diagonal matrix of random ±1 uniform signs
 ▶ Uniform m×n sub-sampling matrix P scaled with √n/√m
 ▶ Let S = 1/√2 PHD.

Note that
$$\mathbb{E}S^T S = I$$
 since $DH^T HD = nI$ and $\mathbb{E}P^T P = I$

Fast Johnson Lindenstrauss Transform Analysis

• Leverage scores of a matrix $A = U\Sigma V^T$ are given by $\ell_i = \|U^T e_i\|_2^2 = e_i^T U U^T e_i$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Another expression: $\ell_i = e_i^T A (A^T A)^{-1} A^T e_i$

Fast Johnson Lindenstrauss Transform Analysis

- Leverage scores of a matrix $A = U\Sigma V^T$ are given by $\ell_i = \|U^T e_i\|_2^2 = e_i^T U U^T e_i$
- Another expression: $\ell_i = e_i^T A (A^T A)^{-1} A^T e_i$
- Compare with leverage scores of $\frac{1}{\sqrt{n}}HDA$ denoted by $\tilde{\ell}_i$

$$\tilde{\ell}_i := e_i^T HDA(A^T D H^T H D A)^{-1} A^T D H^T e_i$$
(3)

$$= \frac{1}{n} e_i^T H D A (A^T A)^{-1} A^T D H^T e_i$$
(4)

$$=\frac{1}{n}e_{i}^{T}HDUU^{T}DH^{T}e_{i}$$
(5)

$$=\frac{1}{n}h_{i}^{\mathsf{T}}DUU^{\mathsf{T}}Dh_{i} \tag{6}$$

where we have used H^TH = nI
ℓ_i is distributed as ¹/_nr^TUU^Tr where r is i.i.d. ±1
ℝ¹/_nr^TUU^Tr = ^d/_n

Fast Johnson Lindenstrauss Transform Analysis

Chernoff's method (as in Chernoff Bound) implies that

$$\mathbb{P}\left[\left|\frac{1}{n}h_{i}^{\mathsf{T}}Du_{j}\right| \geq t\right] \leq 2e^{-t^{2}n/2}$$

for every fixed i and j.

Applying union bound

$$\tilde{\ell}_i = \frac{1}{n} h_i^T D U U^T D h_i \leq \text{const} \, \frac{d \log(nd)}{n}$$

with high probability note that $\ell_i = \frac{d}{n}$ for all *i* when leverage scores are exactly uniform

▲□▶▲□▶▲□▶▲□▶ = のへの

Randomized Hadamard Transform *HD* preconditions leverage scores

Apply HD to data A

 PHDA is a uniformly subsampled version HDA Leverage scores of ¹/_{√n} HDU are near uniform uniform sampling ¹/_{√n} HDA works!
 in other works SA where S = ¹/_{√n} PHD is a subspace embedding

Questions?