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Lecture 12: Gradient Descent



Optimization: Gradient Descent

Global minimum

Local minimum

» Consider unconstrained minimization of f : R — R,
differentiable function

» we want to solve

in f
xrgland (X)

> Gradient descent: choose initial xo € R? and repeat
Xt+1 = Xt — MtVf(Xt)

> fort=1,..., T



Convex vs Non-convex functions

» a function f is called convex if

Vxi,xo € X, ¥Vt €[0,1] 1 f(txa + (1 — t)x2) < tf(x1) + (1 — t)f(x2)

Convex / . Non-convex




Convex vs Non-convex functions

» a function f is called strictly convex if

Vxi #xo € X, Vt€[0,1]:  f(txi + (1 —t)x2) < tf(x1) + (1 — t)f(x)

—— f(x) =xlogx
fx) = |x|




Concave functions

» a function f is called (strictly) concave if

—f is (strictly) convex

Convex Concave
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Differentiable functions

» A one dimensional function f : R — R is differentiable if the
derivative

f'(x) := limp_yg w exists
» Suppose that all partial derivatives of f : R? — R exists
The gradient Vf( ) is the vector of partial derivatives

[Vl = g (%)



Alternative definitions of convexity

> Assume that f(x): RY — R is differentiable. Then f is
convex, if and only if for every x, y the inequality

fly) > f(x)+ VF(x)T(y — x)

is satisfied



Twice differentiable functions

> Suppose that all second derivatives of f : RY — R

B 82 f(x) exists

The Hessian V2f(x) is the matrix of partial derivatives

fx) i
[V2F(l5 = g1 (%)



Twice differentiable convex functions

» A twice differentiable function f(x) is convex if and only if the
Hessian V2f(x) is positive semi-definite for all x € R?

» Suppose that f is convex and differentiable, then x* is a
global minimizer of f if and only if Vf(x*) =0



Gradient descent for differentiable functions

» —Vf(x) is the direction of largest instantaneous decrease
» Gradient Descent (GD):

Xt+1 = Xt — MtVf(Xt)

» where u; is the step size at iteration t.

» if u; is sufficiently small and V£ (x;) # 0, guaranteed to
decrease the value of f

> If f is convex, converges to global minimum under mild
conditions



Gradient descent for convex functions

T
T

slide credit: R. Tibshirani



Gradient descent for non-convex functions
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Gradient descent iterations
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Gradient descent on highly curved functions

» Rosenbrock function (non-convex)
f(x1,x2) = (a— x1)? + b(x2 — x2)?
where a and b are parameters, e.g., a=1,b =100

has a global minimum at (x,x) = (a, a%)
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Optimizing convex least squares cost

» Consider

1
min = ||Ax — b||3
x 2

N——
f(x)
> gradient Vf(x) = AT (Ax — b)
» Gradient Descent:
Xe+1 = Xt — ,UAT(AXt —b)

> fixed step size uy = i



Optimizing convex least squares cost

» Basic (in)equality method
(1) x* minimizes f(x), hence Vf(x*) = AT(Ax* — b) =0
(2) Xt4+1 = Xt — ,U,AT(AXt — b)

(3) define error Ay = x¢ — x*



Optimizing convex least squares cost

» Basic (in)equality method
(1) x* minimizes f(x), hence Vf(x*) = AT(Ax* — b) =0
(2) Xt4+1 = Xt — ,U,AT(AXt — b)

(3) define error Ay = x¢ — x*

> Apyr = A — MATAAt



Optimizing convex least squares cost

» run gradient descent M iterations, i.e., t=1,.... M
> Ay = (I — pATAMA,
> [[Amll2 < gmax (I = kAT A)M) [[Do]l2
omax (I = pAT A = maxizy 4|1 = N(ATA)[?
where J; is the i-th eigenvalue in decreasing order



Optimizing convex least squares cost



Questions?



