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Randomized Linear Algebra and Optimization

Lecture 12: Gradient Descent



Optimization: Gradient Descent

I Consider unconstrained minimization of f : Rd ! R,
di↵erentiable function

I we want to solve

min
x2Rd

f (x)

I Gradient descent: choose initial x0 2 Rd
and repeat

xt+1 = xt � µtrf (xt)

I for t = 1, ...,T



Convex vs Non-convex functions

I a function f is called convex if

8x1, x2 2 X , 8t 2 [0, 1] : f (tx1 + (1� t)x2)  tf (x1) + (1� t)f (x2)



Convex vs Non-convex functions

I a function f is called strictly convex if

8x1 6= x2 2 X , 8t 2 [0, 1] : f (tx1 + (1� t)x2) < tf (x1) + (1� t)f (x2)



Concave functions

I a function f is called (strictly) concave if

�f is (strictly) convex



Di↵erentiable functions

I A one dimensional function f : R ! R is di↵erentiable if the

derivative

f
0
(x) := limh!0

f (x+h)�f (x)
h exists

I Suppose that all partial derivatives of f : Rd ! R exists

The gradient rf (x) is the vector of partial derivatives

[rf (x)]i =
@
@xi

f (x)



Alternative definitions of convexity

I Assume that f (x) : Rd ! R is di↵erentiable. Then f is

convex, if and only if for every x , y the inequality

f (y) � f (x) +rf (x)
T
(y � x)

is satisfied



Twice di↵erentiable functions

I Suppose that all second derivatives of f : Rd ! R
@
@xi

@
@xj

f (x) exists

The Hessian r2
f (x) is the matrix of partial derivatives

[r2
f (x)]ij =

@
@xi

@
@xj

f (x)



Twice di↵erentiable convex functions

I A twice di↵erentiable function f (x) is convex if and only if the

Hessian r2
f (x) is positive semi-definite for all x 2 Rd

I Suppose that f is convex and di↵erentiable, then x
⇤
is a

global minimizer of f if and only if rf (x
⇤
) = 0



Gradient descent for di↵erentiable functions

I �rf (x) is the direction of largest instantaneous decrease

I Gradient Descent (GD):

xt+1 = xt � µtrf (xt)

I where µt is the step size at iteration t.

I if µt is su�ciently small and rf (xt) 6= 0, guaranteed to

decrease the value of f

I If f is convex, converges to global minimum under mild

conditions



Gradient descent for convex functions

slide credit: R. Tibshirani



Gradient descent for non-convex functions

slide credit: R. Tibshirani



Gradient descent iterations

slide credit: A. Quesada



Gradient descent on highly curved functions

I Rosenbrock function (non-convex)

f (x1, x2) = (a� x1)
2
+ b(x2 � x

2
1 )

2

where a and b are parameters, e.g., a = 1, b = 100

has a global minimum at (x1, x2) = (a, a2)



Optimizing convex least squares cost

I Consider

min
x

1

2
kAx � bk22

| {z }
f (x)

I gradient rf (x) = A
T
(Ax � b)

I Gradient Descent:

xt+1 = xt � µAT
(Axt � b)

I fixed step size µt = µ



Optimizing convex least squares cost

I Basic (in)equality method

(1) x
⇤
minimizes f (x), hence rf (x

⇤
) = A

T
(Ax

⇤ � b) = 0

(2) xt+1 = xt � µAT
(Axt � b)

(3) define error �t = xt � x
⇤

I �t+1 = �t � µAT
A�t
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Optimizing convex least squares cost

I run gradient descent M iterations, i.e., t = 1, ...,M

I �M = (I � µAT
A)

M
�0

I k�Mk2  �max
�
(I � µAT

A)
M
�
k�0k2

�max
�
I � µAT

A
�M

= maxi=1,..,d

��1� �i (A
T
A)

��d

where �i is the i-th eigenvalue in decreasing order



Optimizing convex least squares cost



Questions?


