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Randomized Linear Algebra and Optimization
Lecture 13: Gradient Descent with Momentum and
Preconditioning



Optimizing convex least squares cost

» Consider

1
min = ||Ax — b||3
x 2

N——
f(x)
> gradient Vf(x) = AT (Ax — b)
» Gradient Descent:
Xe+1 = Xt — ,UAT(AXt —b)

> fixed step size uy = i



Optimizing convex least squares cost

» Basic (in)equality method
(1) x* minimizes f(x), hence Vf(x*) = AT(Ax* — b) =0
(2) Xt4+1 = Xt — ,U,AT(AXt — b)

(3) define error Ay = x¢ — x*



Optimizing convex least squares cost

» Basic (in)equality method
(1) x* minimizes f(x), hence Vf(x*) = AT(Ax* — b) =0
(2) Xt4+1 = Xt — ,U,AT(AXt — b)

(3) define error Ay = x¢ — x*

> Appr = A — MATAAt



Optimizing convex least squares cost

>
>
>

vV v.Vv Y

run gradient descent M iterations, i.e., t =1,.... M
Ay = (I — pATAMA,

[Aml2 < omax (1 — pATAYM) [ Aol|2

omax (I = pATAM = maxi_y 4 |1 — uXi(ATA)M
where \; is the j-th eigenvalue in decreasing order

Define

A_ as the smallest eigenvalue of ATA

A4 as the largest eigenvalue of AT A

maX;=1,.d |1 — /M,-(ATA)‘ = max <|1 — u)\_}, 1-— ,u,)\+|>
optimal step size that minimizes above

min,>o max (‘1 — pA_|, }1 — M)ur‘)

optimal p = p* satisfies }1 — u*)\_‘ = ‘1 — ,u*)\+‘

which implies p* = M%



Optimizing convex least squares cost

v

Convergence rate using p* = M%

max (1= A= ], 1= wh ) = 3530

. A—ao\M .
b = x7ll2 < (3532) " o = x°1l2
convergence depends on the eigenvalues of AT A
Two extremes:

Identical eigenvalues (extremely well conditioned) \_ = A\,
i.e., A1 =X p =---= )y = convergence in one iteration

Distant eigenvalues (poorly conditioned) Ay > A_
= i*;’\’ ~ 1 leads to slow convergence
A

Condition number k := i—f

M
b = x*ll2 < (£53) " o = x°1l2



Computational complexity

k=1 M
b = x*ll2 < (£53) " o = x*1l2
» Initialize at xg = 0
» For € accuracy, i.e., |[xy — x*||2 <€

» We need to set the number of iterations M to

k—1 N
iog (%7 ) +1og "2 < log(

. log(2)
> M=0 <log(:ﬂ)>

K+ ~ 2
> log (ﬁ) ~ =5 for large K

v

_ log(¢) '\ _ 1
M= 0 <|og(*”~+1)> = O(klog(%)) for large

» Total computational cost ﬁndlog(%) for € accuracy



Improving condition number dependence: momentum

» min, f(x)

» Gradient Descent with Momentum

Xer1 = Xe — e VFE(xe) + Be(xe — xe—1)

» the term S¢(x; — x¢—1) is referred to as momentum



Momentum

» Gradient Descent with Momentum

Xe41 = Xe — e VE(xe) + Be(xe — Xe—1)

> related to a discretization of the second order ordinary
differential equation

X% + ax + bVF(x)

» which models the motion of a body in a potential field given
by f



Momentum

P also called accelerated gradient descent, or heavy-ball method

> can be re-written as

pt = Bepr—1 — VI(x¢)
Xt41 = Xt + Pt

» p; is the search direction

v

there is a short-term memory

> typically we set pg =0



Gradient Descent with Momentum for Least Squares
Problems

>
>

miny f(x) where f(x) = ||Ax — b||3
Gradient Descent with momentum (Heavy Ball Method)

Xep1 = Xe — e VFE(xe) + Be(xe — xe—1)

Recall that when 5 = 0 (Gradient Descent) we defined
A = x; — x* where x* = ATb and established the recursion

Aei1 = (1 — pATA) A,
Since there is one time step memory, consider
Ve i= A3 + [ Ae])3 instead
we can write V; in terms of Vi1 = ||A¢|3 + [|[Ae—1]13
Lyapunov analysis

V¢ is an energy function that decays to zero and
upper-bounds error, i.e., |[A¢]|3 < V;



Convergence analysis

» min, f(x) where f(x) = ||Ax — b||3
» Gradient Descent with momentum (Heavy Ball Method)

Xep1 = Xe — e VE(xe) + Be(xe — xe—1)

> let Ay := x; — x* where x* = Afp
> note that b = Ax* + b* and Vf(x;) = ATAA,

[ JAVER } _ [ xt — aVFf(x) + B(xt — x¢—1) — x* ]
JAWS A

_ [ (1+5)//— aAT A 50/ ] [ AAt; }



Convergence analysis

» iterating for t=1,.... M

[AAM; ] _ [ (l—i—B)II—aATA 50/ ]M[ﬁé]

» taking norms

I L

| L

go_maX([(l—kﬁ)/l—aATA ﬁl} )H[At 1}




Spectral Radius

> Let M be an d X d matrix with eigenvalues A1, ..., Ay

» spectral radius is defined as

p(M) = max |\ (M)

i=1,..

Lemma lim_, omax(M¥)k = p(M)



Let \; denote the eigenvalues of ATAfor i=1,...,d

Lemma The eigenvalues of

(1+B8) —aATA BI
RV

are given by the eigenvalues of 2 x 2 matrices

1+ 6 - Ct/\,' —ﬁ
1 0
fori=1,...,d
These are given by the roots of u?> — (1 + 3 —aX)u+3=0
setting o = ﬁﬁ and 3 = \/\/E \/»V yields

— T 5
spectral radius: p([ (14-5)// aATA %I }) = %\/ﬁ;
VAL _



Convergence result

andﬁ—m VAo

> setting a = ﬁ\/t ;v yields
I =ome () L2,



Computational complexity

» Gradient Descent (8 = 0) total computational cost
rnd log(2) for € accuracy

» Gradient Descent with Momentum total computational cost
Vknd log(L) for € accuracy
> we need to know eigenvalues of AT A to find optimal step-sizes



Computational complexity

» Gradient Descent (8 = 0) total computational cost
rnd log(2) for € accuracy

» Gradient Descent with Momentum total computational cost
Vknd log(L) for € accuracy

> we need to know eigenvalues of AT A to find optimal step-sizes

» Conjugate Gradient doesn't require the eigenvalues explicitly
and results in \/knd log(1) operations



Questions?



