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Optimizing convex least squares cost

I Consider

min
x

1

2
‖Ax − b‖22︸ ︷︷ ︸

f (x)

I gradient ∇f (x) = AT (Ax − b)

I Gradient Descent:

xt+1 = xt − µAT (Axt − b)

I fixed step size µt = µ



Optimizing convex least squares cost

I Basic (in)equality method

(1) x∗ minimizes f (x), hence ∇f (x∗) = AT (Ax∗ − b) = 0

(2) xt+1 = xt − µAT (Axt − b)

(3) define error ∆t = xt − x∗

I ∆t+1 = ∆t − µATA∆t
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Optimizing convex least squares cost

I run gradient descent M iterations, i.e., t = 1, ...,M

I ∆M = (I − µATA)M∆0

I ‖∆M‖2 ≤ σmax

(
(I − µATA)M

)
‖∆0‖2

σmax

(
I − µATA

)M
= maxi=1,..,d

∣∣1− µλi (ATA)
∣∣M

where λi is the i-th eigenvalue in decreasing order

I Define

λ− as the smallest eigenvalue of ATA

λ+ as the largest eigenvalue of ATA

I maxi=1,..,d

∣∣1− µλi (ATA)
∣∣ = max

(∣∣1− µλ−∣∣, ∣∣1− µλ+∣∣)
I optimal step size that minimizes above

I minµ≥0 max
(∣∣1− µλ−∣∣, ∣∣1− µλ+∣∣)

I optimal µ = µ∗ satisfies
∣∣1− µ∗λ−∣∣ =

∣∣1− µ∗λ+∣∣
which implies µ∗ = 2

λ++λ−



Optimizing convex least squares cost

I Convergence rate using µ∗ = 2
λ++λ−

I max
(∣∣1− µ∗λ−∣∣, ∣∣1− µ∗λ+∣∣) = λ+−λ−

λ++λ−

I ‖xM − x∗‖2 ≤
(
λ+−λ−
λ++λ−

)M
‖x0 − x∗‖2

convergence depends on the eigenvalues of ATA

Two extremes:

I Identical eigenvalues (extremely well conditioned) λ− = λ+,
i.e., λ1 = λ2 = · · · = λd =⇒ convergence in one iteration

I Distant eigenvalues (poorly conditioned) λ+ � λ−
=⇒ λ+−λ−

λ++λ−
≈ 1 leads to slow convergence

I Condition number κ := λ+
λ−

I ‖xM − x∗‖2 ≤
(
κ−1
κ+1

)M
‖x0 − x∗‖2



Computational complexity

‖xM − x∗‖2 ≤
(
κ−1
κ+1

)M
‖x0 − x∗‖2

I Initialize at x0 = 0

I For ε accuracy, i.e., ‖xM − x∗‖2 ≤ ε
I We need to set the number of iterations M to

M log

(
κ− 1

κ+ 1

)
+ log ‖x∗‖2 ≤ log(ε)

I M = O

(
log( 1

ε
)

log( κ+1
κ−1)

)
I log

(
κ+1
κ−1

)
≈ 2

κ−1 for large κ

I M = O

(
log( 1

ε
)

log( κ+1
κ−1)

)
= O

(
κ log(1ε )

)
for large κ

I Total computational cost κnd log(1ε ) for ε accuracy



Improving condition number dependence: momentum

I minx f (x)

I Gradient Descent with Momentum

xt+1 = xt − µt∇f (xt) + βt(xt − xt−1)

I the term βt(xt − xt−1) is referred to as momentum



Momentum

I Gradient Descent with Momentum

xt+1 = xt − µt∇f (xt) + βt(xt − xt−1)

I related to a discretization of the second order ordinary
differential equation

ẍ + aẋ + b∇f (x)

I which models the motion of a body in a potential field given
by f



Momentum

I also called accelerated gradient descent, or heavy-ball method

I can be re-written as

pt = βtpt−1 −∇f (xt)

xt+1 = xt + αtpt

I pt is the search direction

I there is a short-term memory

I typically we set p0 = 0



Gradient Descent with Momentum for Least Squares
Problems

I minx f (x) where f (x) = ‖Ax − b‖22
I Gradient Descent with momentum (Heavy Ball Method)

xt+1 = xt − µt∇f (xt) + βt(xt − xt−1)

I Recall that when β = 0 (Gradient Descent) we defined
∆t := xt − x∗ where x∗ = A†b and established the recursion

∆t+1 =
(
I − µATA

)
∆t

I Since there is one time step memory, consider
Vt := ‖∆t+1‖22 + ‖∆t‖22 instead

I we can write Vt in terms of Vt−1 = ‖∆t‖22 + ‖∆t−1‖22
I Lyapunov analysis

Vt is an energy function that decays to zero and
upper-bounds error, i.e., ‖∆t‖22 ≤ Vt



Convergence analysis

I minx f (x) where f (x) = ‖Ax − b‖22
I Gradient Descent with momentum (Heavy Ball Method)

xt+1 = xt − µt∇f (xt) + βt(xt − xt−1)

I let ∆t := xt − x∗ where x∗ = A†b

I note that b = Ax∗ + b⊥ and ∇f (xt) = ATA∆t[
∆t+1

∆t

]
=

[
xt − α∇f (xt) + β(xt − xt−1)− x∗

∆t

]
=

[
(1 + β)I − αATA βI

I 0

] [
∆t

∆t−1

]



Convergence analysis

I iterating for t = 1, ...,M

[
∆M+1

∆M

]
=

[
(1 + β)I − αATA βI

I 0

]M [
∆1

∆0

]

I taking norms∥∥∥∥[ ∆t+1

∆t

]∥∥∥∥
2

=

∥∥∥∥∥
[

(1 + β)I − αATA βI
I 0

]M [
∆t

∆t−1

]∥∥∥∥∥
2

≤ σmax

([
(1 + β)I − αATA βI

I 0

]M)∥∥∥∥[ ∆t

∆t−1

]∥∥∥∥
2



Spectral Radius

I Let M be an d × d matrix with eigenvalues λ1, ..., λd
I spectral radius is defined as

ρ(M) := max
i=1,..,d

|λi (M)|

Lemma limk→ σmax(Mk)
1
k = ρ(M)



I Let λi denote the eigenvalues of ATA for i = 1, ..., d

I Lemma The eigenvalues of[
(1 + β)I − αATA βI

I 0

]
are given by the eigenvalues of 2× 2 matrices[

1 + β − αλi −β
1 0

]
I for i = 1, ..., d

I These are given by the roots of u2 − (1 + β − αλi )u + β = 0

I setting α = 4√
λ++
√
λ−

and β =
√
λ+−
√
λ−

√
λ++
√
λ−

yields

I spectral radius: ρ

([
(1 + β)I − αATA βI

I 0

])
=
√
λ+−
√
λ−

√
λ++
√
λ−



Convergence result

I setting α = 4√
λ++
√
λ−

and β =
√
λ+−
√
λ−

√
λ++
√
λ−

yields

∥∥∥∥[ ∆t+1

∆t

]∥∥∥∥
2

≤ σmax

(√
λ+ −

√
λ−√

λ+ +
√
λ−

)M ∥∥∥∥[ ∆t

∆t−1

]∥∥∥∥
2



Computational complexity

I Gradient Descent (β = 0) total computational cost
κnd log(1ε ) for ε accuracy

I Gradient Descent with Momentum total computational cost√
κnd log(1ε ) for ε accuracy

I we need to know eigenvalues of ATA to find optimal step-sizes

I Conjugate Gradient doesn’t require the eigenvalues explicitly
and results in

√
κnd log(1ε ) operations
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Questions?


