EE270
Large scale matrix computation,
optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Feb 18 2020



Randomized Linear Algebra and Optimization
Lecture 14: Second-Order Optimization Algorithms,
Strong Convexity and Randomized Preconditioners



Recap: Gradient Descent with momentum

> min, f(x)

» Gradient Descent with Momentum

Xep1 = Xt — e VE(xe) + Be(xe — xe—1)

» the term S:(x; — x¢—1) is referred to as momentum



Computational complexity

» Gradient Descent (5 = 0) total computational cost
rnd log(L) for € accuracy

» Gradient Descent with Momentum total computational cost
Vrnd log(L) for € accuracy

> we need to know eigenvalues of AT A to find optimal step-sizes



Computational complexity

» Gradient Descent (5 = 0) total computational cost
rnd log(L) for € accuracy

» Gradient Descent with Momentum total computational cost
Vrnd log(L) for € accuracy

> we need to know eigenvalues of AT A to find optimal step-sizes

» Conjugate Gradient doesn't require the eigenvalues explicitly
and results in /knd log(¢) operations



Newton's Method

vVvyyVYyyvyy

Suppose f is twice differentiable, and consider a second order
Taylor approximation at a point x;

Fy) = Floxe) + TF()T(y = x0) + 50— x)V2F()y —x)

and minimize the approximation

xer1 = xe — pe (V2F(x)) 7 VF(x)

for minimizing functions f(Ax) where A € R

complexity O(nd?) to form the Hessian and O(d?) to invert

or alternatively O(nd?) for factorizing the Hessian



Newton's Method in one dimension
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Newton's Method for least squares converges in one step

» Consider 1
min = ||Ax — b||3
x 2

—_——
f(x)

> gradient Vf(x) = AT (Ax — b)
> Hessian V2f(x) = ATA
» Gradient Descent:

Xe+l = Xp — ,uAT(Axt — b)
> Newton's Method:
xer1 = xt — W(ATA)LAT (Ax; — b)

> fixed step size u: =



Newton's Method with Random Projection

v

Randomized Newton's Method:
xe41 = x¢ — W(ATSTSA)LAT (Ax; — b)

fixed step size pur =
computational cost:

O(nd log n) to form SA using Fast Johnson Lindenstrauss
Transform and O(d®) to invert (ATSTSA)™1

alternatively O(md?) to factorize SA



Analyzing Newton's Method with Random Projection

» Randomized Newton's Method:
xer1 = x¢ — W(ATSTSA) AT (Ax; — b)

» Define Ay = A(xt — x*)



Analyzing Newton's Method with Random Projection

» Randomized Newton's Method:
xer1 = Xx¢ — (ATSTSAY AT (Ax; — b)
» Define Ay = A(xt — x*)
At+]_ = At — /,LA(ATSTSA)ilATAt

» after M iterations
Ay = (I — pA(ATSTSA)TATIM A,



Analyzing Newton's Method with Random Projection

» Let A= UZ VT be the Singular Value Decomposition of A
> AATSTSA)TAT = y(UTSTSu)UT
Ay = (I —pUUTSTSU)TUT)MA,
» A; € Range(A) implies UUTA; = Ay and [[UT A2 = || Atz



Analyzing Newton's Method with Random Projection

» Let A= UZ VT be the Singular Value Decomposition of A

> AATSTSA)TAT = y(UTSTSu)UT
Ay = (I —pUUTSTSU)TUT)MA,

» A; € Range(A) implies UUTA; = Ay and [[UT A2 = || Atz
UTAy =UT(I —pUUTSTSU)TUTMUUT A

> Note that
UT(I —pU(UTSTSU)YTUT) = (I — w(UTSTSU)YHUT
UTAy = (1 — w(UTSTSU)"HYMUT A



Analyzing Newton's Method with Random Projection

» Let A= UZ VT be the Singular Value Decomposition of A

> A(ATSTSA) AT = U(UTSTSU)UT
Ay = (I — pUUTSTSU)"TUTMA,

» A; € Range(A) implies UUTA; = Ay and [[UT A2 = || Atz
UTAnm =UT( = pUUTSTSU)"TUTMUUT Ag

> Note that

UT(I — pUUTSTSU)UT) = (I — w(UTSTSU)Y Y UT

UTAp = (I — p(UTSTSU)Y " HYMUT A

[Aml2 < omax (I = p(UTSTSU))M) || A2

|Amllz < maxizy,...a [1 = pA((UTSTSU) )™ [ A2

v

v



Eigenvalues of randomly projected matrices

> A\ ((UTSTSU)™Y) = M\(UTSTSu)
» Recall that Approximate Matrix Multiplication for UTU = |
|]@—UT5T5U‘|F < ¢ implies
!
O max (I — UTSTSU) <e
> which is identical to |1 — \(UTSTSU)| <e Vi=1,..,d
> All eigenvalues of UTSTSU are in the range [1 —¢,1 + €]



Optimal step-size

> All eigenvalues of UTSTSU are in the range [1 — ¢, 1 + €]

> All eigenvalues of (UTSTSU)™! are in the range [{1-, 141re]

TcTopn-1y|"
18ull2 < max |1= A ((UTSTSUY | ol (1)

1 M
= 1—p—— A 2
mar ([t -2 ) 180l 2

_'ul—f—e

» optimal step-size that minimizes the upper-bound satisfies

1
1—pf——|=1-
e




Convergence rate

> =12 =(1-€¢)(1+¢

1—e + 1+e

M
1) A
: i) 1ol @)

—max([I1—= 1+, [1- Q=DM (4
= M| Aol (5)

1 1
[Amll2 < max (‘1 —pBr |




Row Sampling Setch

> We may pick a row sampling matrix S
as in Approximate Matrix Multiplication ATSTSA~ AT A

X = x, — u(ATSTSA) AT (Ax; — b)

» ATSTSA is a subsampled Hessian



How to choose the sketch

P According to the convergence analysis we need
|UTSTSU — UTU||» < e for some € > 0 since

|8mllz < omax (1= w(UTSTSU)™)M) B0z

» Row sampling
llui 13
>0, T3
(leverage scores, or optimal AMM for UT U = 1)

» Uniform row sampling

» Johnson Lindenstrauss Embeddings:
» i.i.d. Gaussian, Rademacher
» Sparse JL Transform (one/few non-zeros per column)
» Fast JL Transform (PHD based on Randomized Hadamard)

» Nonuniform row sampling. Probabilities p; =



Number of samples/sketches required

» In order to obtain the approximation
E||UTSTSU - UTU|, < e

» Row sampling
» Nonuniform row sampling with p; = ZHUi\‘\'gz
j=1 ujll3
samples are needed
» Uniform row sampling
m= w‘z(#") samples are needed where
= p(U) = max; [|ui3
» Johnson Lindenstrauss Embeddings:

» i.i.d. Gaussian, Rademacher m = 6%

m= dI:zgd

2
> Sparse JL Transform (one non-zeros per column) m = %
> Sparse JL Transform (O(*%2%) non-zeros per column) m= %

> Fast JL Transform (Randomized Hadamard) m = ¢1%¢



Coherence of a matrix

» Coherence parameter is defined as
p= p(U) = maxiz1,__n|lui3
» Note that u; " u; = e,-—r UUTe = e,-TPe,- = Pjjand trP =d
therefore % <py<l1
» Uniform row sampling
m= wﬁ“‘") samples are required to obtain the subspace
embedding
|UTSTSU—-UTU|], < e

m can be between % (best case) and % (worst case)

depending on the distribution of | u;||3
» Non-uniform (leverage score) sampling, or JL embeddings
does not have the p(U) coherence factor



How to prove sampling results: Matrix Concentration

» Suppose that we sample the rows of U non-uniformly wrt a
distribution p;, i = 1,.,,n. How large is the spectral norm

error ||[UTSTSU — UT U||2? In AMM, we considered
Frobenius norm error.

» Concentration of sums of matrices

Theorem:! Let iy, ..., iim be i.i.d. vectors such that
@il < B, Vi, then

log m

1 m
EH— g:a7 — Ei UTH < € := constant x B
mZ; J 1T, = m
J:

1Can be improved to a high probability result: Sampling from Large Matrices: An
Approach through Geometric Functional Analysis, Rudelson and Vershynin, 2007



How to prove sampling results: Matrix Concentration

» Suppose that we sample the rows of U non-uniformly wrt a
distribution p;, i = 1,.,,n. How large is the spectral norm
error |[UTSTSU — UTU||2? In AMM, we considered
Frobenius norm error.

» Concentration of sums of matrices

Theorem:! Let iy, ..., iim be i.i.d. vectors such that
@il < B, Vi, then

log m

J

1 m
EH— g:a7 — Ei UTH < € := constant x B
mZ; J 1T, = m
J:

» non-uniform row sampling &y = u;/\/p; with probability p; Vi.
Note that

T_ N0 uoy! T _ Ty
Euviu =374 N Yorquul =U0"U=1.
B = max; ||ui||l2/+/pi, ideally needs to be small.
1Can be improved to a high probability result: Sampling from Large Matrices: An
Approach through Geometric Functional Analysis, Rudelson and Vershynin, 2007




How to prove sampling results: Matrix Concentration

Theorem:? Let iy, ..., iim be i.i.d. vectors such that
|dil|2 < B, Vi, then

1

EH— g;a; —Eg uTH < € := constant x B

Jj=1

log m

m

» non-uniform row sampling {; = u;/\/p; with probability p; Vi.

» Using leverage score distribution p; = Z”HUII‘\E 7 we have
1 114j
B = max; ||uill2/uill2 327 HLUH% —trUTU=d
> Usmg uniform distribution p; = =, we have

= max; ||uill2/+/1/n = nu(U) where w(U) := max; [|ui]|2 is
the coherence parameter of U.

» Picking m = CB Iog( ) we obtain the sampling results

!
m= 4% and m = %‘Q(“") respectively.

2Can be improved to a high probability result: Sampling from Large Matrices: An
Approach through Geometric Functional Analysis, Rudelson and Vershynin, 2007



Computational complexity

v

For € accuracy in the objective value, i.e., [|[AX — Ax*|2 < €
Gradient Descent (GD) total computational cost rnd log(2)

Gradient Descent with Momentum (GD-M) total
computational cost v/knd log(1)

Note that we need to know eigenvalues of AT A to find
optimal step-sizes for GD and GD-M. Conjugate Gradient
(CG) doesn't require the eigenvalues explicitly and results in
Vnd log(L) operations

Randomized Newton Method (using randomized Hadamard
based fast JL, m = constant X d log d) total computational
cost nd logn+ d®logd + ndlog(%) for n > d, the complexity
is O(nd log(1/e€))

uniform row sampling, leverage score sampling and other
sketching matrices also work with different sketch sizes.



Preconditioning Least Squares Problems

>

>

min || Ax — b||3
X

Convergence of GD, GD-M or CG depend on the condition
Amax(AT A)

Amin(ATA)

We can precondition the problem by a variable change x = Rx’
where R is an invertible matrix. Then, we form the problem

min | ARX' — ]

number k :=

whose solution is (AR)'b = (RTATAR)IRTATb =

R YATA)IATh = R71A"h.

Then we can recover x* = Rx' = RR71ATh = ATb

Condition number of AR can be better than A for carefully
chosen preconditioners R, and hence GD, GD-M or CG can
converge faster. ldeally, eigenvalues of RT AT AR should be all
near 1.



Preconditioning Trade-off

P original problem

min || Ax — b||3
X

» preconditioned problem

min | ARX' — I3

» R = is the original problem RTAT AR = AT A. Condition
number is the same.
> R = (ATA)"! perfectly preconditions since
(ATA)~/2AT A(AT A)~1/2 = |. Condition number is 1.
> Recovering the solution requires solving AT Ax = x'!
we need a cheaply invertible matrix that preconditions the

eigenvalues
> example: diagonal preconditioner R = diag(A)~*



Randomized Preconditioners

> original problem
. 2
min ||Ax — b||5
X
» preconditioned problem
min [|ARX" — b||3
Xl
Condition number of RT AT AR should be small.

exploring different options
» R i.i.d random, e.g., Gaussian?



Randomized Preconditioners

> original problem
. 2
min ||Ax — b||5
X
» preconditioned problem
min [|ARX" — b||3
Xl
Condition number of RT AT AR should be small.
exploring different options

» R i.i.d random, e.g., Gaussian?
> R=ATSTSA?



Randomized Preconditioners

> original problem
min ||Ax — b||3
X

» preconditioned problem

min [|ARX" — b||3
X/

Condition number of RT AT AR should be small.
exploring different options

» R i.i.d random, e.g., Gaussian?

> R=ATSTSA?

> Let R=(ATSTSA)"'/2. Then we have

RTATAR = (ATSTSA)"Y2AT A(ATSTSA)~1/2



Hessian Square Root (A7 ST SA)~1/2 Preconditioner

> Let R=(ATSTSA)~Y/2. Then we have

» Note that RTATAR and ARRT AT have the same non-zero
eigenvalues

> ARRTAT = A(ATSTSA) " Y2(ATSTSA)"12AT =
A(ATSTSA) AT



Hessian Square Root (A7 ST SA)~1/2 Preconditioner

>
>

Let R = (ATSTSA)"1/2. Then we have

Note that RTATAR and ARRT AT have the same non-zero
eigenvalues

ARRTAT = A(ATSTSA)"1/2(ATSTSA)1/2AT =
A(ATSTSA) AT

Let A= ULV the Singular Value Decomposition

Then we have A(ATSTSA) AT = U(UTSTSU)tUT,
whose eigenvalues are the eigenvalues of (UTSTSU)™1

Therefore, subspace approximation |[UTSTSU — I, < ¢
implies that eigenvalues of UTSTSU are in (1 —¢,1 +¢).

Consequently, eigenvalues of RT AT AR are also in

(1 —€,1+ €), which improves the condition number to
k(AR) = ifg

Non-uniform row sampling, uniform row sampling (with extra
coherence dependence), JL embeddings will work




Implementing Randomized Preconditioning

> Generate a sketching matrix S. Recall R = (AT ST SA)~1/2
> Apply QR factorization to SA to obtain SA = QsaRsa where
Rsa is upper triangular and Qs4 is orthonormal.

Observe that

R=(ATSTSA) 2 = (R1,QL\QsaRsa) " = (RI\Rsp) 1/
and an inverse square root is given by Rga

Since Rsp is upper triangular, we can apply it to vectors in
linear time using back-substitution.



Implementing Randomized Preconditioning

> Generate a sketching matrix S. Recall R = (AT ST SA)~1/2

> Apply QR factorization to SA to obtain SA = QsaRsa where
Rsa is upper triangular and Qs4 is orthonormal.
Observe that
R = (ATSTSA)Y2 = (R1,Q1,QsaRsa) ™ = (RI,Rsa)~1/2
and an inverse square root is given by Rga
Since Rsp is upper triangular, we can apply it to vectors in
linear time using back-substitution.

» Solve

min | ARK' — b3

using Conjugate Gradient method or Gradient Descent with
Momentum (since we know about the eigenvalues). Note that
each steps requires gradient calculation RT AT (A(Rx) — b),
which can be done with back-substitution and matrix vector
products



Randomized Newton vs Preconditioning

» Both approaches remove the condition number dependence

» Randomized Preconditioning requires QR decomposition and
back-substitution steps

» Randomized Newton (also called Iterative Hessian Sketch) is
more flexible since QR decomposition is not required. We can
use approximate sub-solvers

x* = x, — (ATSTSA) AT (Ax, — b)

1
= X + argmin EHSAzHg + zT(AT(Ax: — b))

> e.g., CG to approximately solve the system
(ATSTSA)z = AT(Ax; — b)

» Furthermore, Randomized Newton generalizes to arbitrary
functions: HessianSketch!gradient



Gradient Descent for Convex Optimization Problems

» Strong convexity

A convex function f is called strongly convex if there exists
two positive constants S_ < 4 such that

B <X (VP(x)) < B+

for every x in the domain of f
» Equivalent to

Amin(V2£(x)) > B

Amax(V2f(x)) < B4



Gradient Descent for Strongly Convex Functions

> Xpr1 = Xp — ,UtVf(Xt)
» Suppose that f is strongly convex with parameters S_, 54
let £* := miny f(x)
Theorem
» Set constant step-size iy = é
Flxep) — < (1- %;)(f(Xr) —f7)
recursively applying we get
> Fxm) — F* < (1= 59)M(F(x0) — F¥)



Gradient Descent for Strongly Convex Functions

vV vy VvYyy

Xt4+1 = Xt — ,LLVf(Xt)

step-size pu = i

fom) = £ < (1= G)M(F(x0) — )
For optimizing functions f(Ax)
computational complexity O(rnd log(1))

— B+
where Kk = 7



Gradient Descent with Momentum (Heavy Ball Method)
for Strongly Convex Functions

» xer1 = xe — uVIF(xe) + B(xe — xe—1)

P step-size parameter = PR S —
(VBi++/B-)?

2
» momentum parameter [ = max <]1 — /b, |1 — \/uﬁ+|>

» For optimizing functions f(Ax)
computational complexity O(\/Endlog(%))

where K = g—f



Questions?
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