EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Feb 18 2020

Randomized Linear Algebra and Optimization Lecture 14: Second-Order Optimization Algorithms, Strong Convexity and Randomized Preconditioners

Recap: Gradient Descent with momentum

$$x_{t+1} = x_t - \mu_t \nabla f(x_t) + \beta_t (x_t - x_{t-1})$$

• the term $\beta_t(x_t - x_{t-1})$ is referred to as **momentum**

Computational complexity

- Gradient Descent (β = 0) total computational cost κnd log(¹/_ε) for ε accuracy
- Gradient Descent with Momentum total computational cost $\sqrt{\kappa} nd \log(\frac{1}{\epsilon})$ for ϵ accuracy
- we need to know eigenvalues of $A^T A$ to find optimal step-sizes

Computational complexity

- Gradient Descent (β = 0) total computational cost κnd log(¹/_ε) for ε accuracy
- Gradient Descent with Momentum total computational cost $\sqrt{\kappa} nd \log(\frac{1}{\epsilon})$ for ϵ accuracy
- we need to know eigenvalues of $A^T A$ to find optimal step-sizes
- Conjugate Gradient doesn't require the eigenvalues explicitly and results in $\sqrt{\kappa} nd \log(\frac{1}{\epsilon})$ operations

Newton's Method

Suppose f is twice differentiable, and consider a second order Taylor approximation at a point x_t

$$f(y) \approx f(x_t) + \nabla f(x_t)^T (y - x_t) + \frac{1}{2} (y - x^t) \nabla^2 f(x^t) (y - x^t)$$

and minimize the approximation

•
$$x_{t+1} = x_t - \mu_t (\nabla^2 f(x))^{-1} \nabla f(x)$$

- ▶ for minimizing functions f(Ax) where $A \in \mathbb{R}^{n \times d}$
- complexity $O(nd^2)$ to form the Hessian and $O(d^3)$ to invert
- or alternatively $O(nd^2)$ for factorizing the Hessian

Newton's Method in one dimension

Newton's Method for least squares converges in one step

Consider

$$\min_{x} \underbrace{\frac{1}{2} \|Ax - b\|_{2}^{2}}_{f(x)}$$

• gradient
$$\nabla f(x) = A^T(Ax - b)$$

• Hessian
$$\nabla^2 f(x) = A^T A$$

Gradient Descent:

$$x_{t+1} = x_t - \mu A^T (A x_t - b)$$

Newton's Method:

$$x_{t+1} = x_t - \mu (A^T A)^{-1} A^T (A x_t - b)$$

Fixed step size $\mu_t = \mu$

Newton's Method with Random Projection

Randomized Newton's Method:

$$x_{t+1} = x_t - \mu (A^T S^T S A)^{-1} A^T (A x_t - b)$$

• fixed step size
$$\mu_t = \mu$$

- computational cost:
- O(nd log n) to form SA using Fast Johnson Lindenstrauss Transform and O(d³) to invert (A^TS^TSA)⁻¹
- alternatively O(md²) to factorize SA

Randomized Newton's Method:

$$x_{t+1} = x_t - \mu (A^T S^T S A)^{-1} A^T (A x_t - b)$$

• Define
$$\Delta_t = A(x_t - x^*)$$

Randomized Newton's Method:

$$x_{t+1} = x_t - \mu (A^T S^T S A)^{-1} A^T (A x_t - b)$$

• Define
$$\Delta_t = A(x_t - x^*)$$

 $\Delta_{t+1} = \Delta_t - \mu A(A^T S^T S A)^{-1} A^T \Delta_t$

$$\Delta_M = (I - \mu A (A^T S^T S A)^{-1} A^T)^M \Delta_0$$

-

Eigenvalues of randomly projected matrices

$$\lambda_i((U^T S^T S U)^{-1}) = \lambda_i(U^T S^T S U)^{-1}$$

- ► Recall that Approximate Matrix Multiplication for $U^T U = I$ $\|\underbrace{U^T U}_{I} - U^T S^T S U\|_F \le \epsilon$ implies $\sigma_{\max} \left(I - U^T S^T S U\right) \le \epsilon$
- which is identical to $|1 \lambda_i(U^T S^T S U)| \le \epsilon \quad \forall i = 1, ..., d$
- ▶ All eigenvalues of $U^T S^T S U$ are in the range $[1 \epsilon, 1 + \epsilon]$

Optimal step-size

- ▶ All eigenvalues of $U^T S^T S U$ are in the range $[1 \epsilon, 1 + \epsilon]$
- ► All eigenvalues of $(U^T S^T S U)^{-1}$ are in the range $[\frac{1}{1-\epsilon}, \frac{1}{1+\epsilon}]$

$$\begin{split} \|\Delta_{M}\|_{2} &\leq \max_{i=1,\dots,d} \left| 1 - \mu \lambda_{i} ((U^{T} S^{T} S U)^{-1}) \right|^{M} \|\Delta_{0}\|_{2} \quad (1) \\ &= \max \left(\left| 1 - \mu \frac{1}{1 - \epsilon} \right|, \left| 1 - \mu \frac{1}{1 + \epsilon} \right| \right)^{M} \|\Delta_{0}\|_{2} \quad (2) \end{split}$$

optimal step-size that minimizes the upper-bound satisfies

$$\left|1 - \mu^* \frac{1}{1 - \epsilon}\right| = \left|1 - \mu^* \frac{1}{1 + \epsilon}\right|$$

$$\flat \ \mu^* = \frac{2}{\frac{1}{1 - \epsilon} + \frac{1}{1 + \epsilon}} = (1 - \epsilon)(1 + \epsilon)$$

Convergence rate

$$\mu^{*} = \frac{2}{\frac{1}{1-\epsilon} + \frac{1}{1+\epsilon}} = (1-\epsilon)(1+\epsilon)$$

$$\|\Delta_{M}\|_{2} \leq \max\left(\left|1-\mu\frac{1}{1-\epsilon}\right|, \left|1-\mu\frac{1}{1+\epsilon}\right|\right)^{M} \|\Delta_{0}\|_{2} \quad (3)$$

$$= \max\left(|1-(1+\epsilon)|, |1-(1-\epsilon)|\right)^{M} \|\Delta_{0}\|_{2} \quad (4)$$

$$= \epsilon^{M} \|\Delta_{0}\|_{2} \quad (5)$$

 We may pick a row sampling matrix S as in Approximate Matrix Multiplication A^TS^TSA ≈ A^TA

$$x^{t+1} = x_t - \mu (A^T S^T S A)^{-1} A^T (A x_t - b)$$

• $A^T S^T S A$ is a subsampled Hessian

How to choose the sketch

• According to the convergence analysis we need $||U^T S^T S U - U^T U||_2 \le \epsilon$ for some $\epsilon > 0$ since

$$\|\Delta_M\|_2 \le \sigma_{\max} \left(I - \mu (U^T S^T S U)^{-1})^M\right) \|\Delta_0\|_2$$

Row sampling

Nonuniform row sampling. Probabilities $p_i = \frac{\|u_i\|_2^2}{\sum_{j=1}^n \|u_j\|_2^2}$

(leverage scores, or optimal AMM for $U^T U = I$)

Uniform row sampling

Johnson Lindenstrauss Embeddings:

- i.i.d. Gaussian, Rademacher
- Sparse JL Transform (one/few non-zeros per column)
- Fast JL Transform (PHD based on Randomized Hadamard)

Number of samples/sketches required

In order to obtain the approximation

$$\mathbb{E} \| \boldsymbol{U}^{\mathsf{T}} \boldsymbol{S}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{U} - \boldsymbol{U}^{\mathsf{T}} \boldsymbol{U} \|_{2} \leq \epsilon$$

Row sampling

 Nonuniform row sampling with p_i = ||u_i||²/_{∑j=1} ||u_j||²/₂ m = d log d / ε² samples are needed
 Uniform row sampling m = μn log(μn) / ε² samples are needed where μ := μ(U) := max_i ||u_i||²/₂

Johnson Lindenstrauss Embeddings:

• i.i.d. Gaussian, Rademacher $m = \frac{d}{\epsilon^2}$

Sparse JL Transform (one non-zeros per column) $m = \frac{d^2}{\epsilon^2}$

- ▶ Sparse JL Transform $(O(\frac{\log d}{\epsilon})$ non-zeros per column) $m = \frac{d}{\epsilon^2}$
- Fast JL Transform (Randomized Hadamard) $m = \frac{d \log d}{e^2}$

Coherence of a matrix

- Coherence parameter is defined as
 \(\mu := \mu(U) = \mu ax_{i=1,...,n} \|u_i\|_2^2\)
- ▶ Note that $u_i^{\top} u_i = e_i^{\top} U U^{\top} e_i = e_i^{\top} P e_i = P_{ii}$ and $\mathbf{tr} P = d$ therefore $\frac{d}{n} \leq \mu_U \leq 1$
- Uniform row sampling $m = \frac{\mu n \log(\mu n)}{e^2}$ samples are required to obtain the subspace embedding

$$\|\boldsymbol{U}^{\mathsf{T}}\boldsymbol{S}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{U}-\boldsymbol{U}^{\mathsf{T}}\boldsymbol{U}\|_{2}\leq\epsilon$$

m can be between $\frac{d \log d}{\epsilon^2}$ (best case) and $\frac{n \log d}{\epsilon^2}$ (worst case) depending on the distribution of $||u_i||_2^2$

► Non-uniform (leverage score) sampling, or JL embeddings does not have the µ(U) coherence factor

How to prove sampling results: Matrix Concentration

Suppose that we sample the rows of U non-uniformly wrt a distribution p_i, i = 1,.., n. How large is the spectral norm error ||U^TS^TSU − U^TU||₂? In AMM, we considered Frobenius norm error.

Concentration of sums of matrices
Theorem:¹ Let ũ₁,..., ũ_m be i.i.d. vectors such that
||ũ_i||₂ ≤ B, ∀i, then

$$\mathbb{E} \left\| \frac{1}{m} \sum_{j=1}^{m} \tilde{u}_{j} \tilde{u}_{j}^{T} - \mathbb{E} \tilde{u}_{1} \tilde{u}_{1}^{T} \right\|_{2} \leq \epsilon := \text{constant} \times B \sqrt{\frac{\log m}{m}}$$

¹Can be improved to a high probability result: Sampling from Large Matrices: An Approach through Geometric Functional Analysis, Rudelson and Vershynin, 2007

How to prove sampling results: Matrix Concentration

Suppose that we sample the rows of U non-uniformly wrt a distribution p_i, i = 1,.., n. How large is the spectral norm error ||U^TS^TSU − U^TU||₂? In AMM, we considered Frobenius norm error.

Concentration of sums of matrices
Theorem:¹ Let ũ₁,..., ũ_m be i.i.d. vectors such that
||ũ_i||₂ ≤ B, ∀i, then

$$\mathbb{E} \left\| \frac{1}{m} \sum_{j=1}^{m} \tilde{u}_{j} \tilde{u}_{j}^{T} - \mathbb{E} \tilde{u}_{1} \tilde{u}_{1}^{T} \right\|_{2} \le \epsilon := \text{constant} \times B \sqrt{\frac{\log m}{m}}$$

▶ non-uniform row sampling $\tilde{u}_1 = u_i / \sqrt{p_i}$ with probability $p_i \forall i$. Note that $\mathbb{E}u_1 u_1^T = \sum_{i=1}^n \frac{u_i}{\sqrt{p_i}} \frac{u_i^T}{\sqrt{p_i}} p_i = \sum_{i=1}^n u_i u_i^T = U^T U = I$. $B = \max_i ||u_i||_2 / \sqrt{p_i}$, ideally needs to be small.

¹Can be improved to a high probability result: Sampling from Large Matrices: An Approach through Geometric Functional Analysis, Rudelson and Vershynin, 2007

How to prove sampling results: Matrix Concentration

Theorem:² Let $\tilde{u}_1, ..., \tilde{u}_m$ be i.i.d. vectors such that $\|\tilde{u}_i\|_2 \leq B, \forall i$, then

$$\mathbb{E} \left\| \frac{1}{m} \sum_{j=1}^{m} \tilde{u}_{j} \tilde{u}_{j}^{T} - \mathbb{E} \tilde{u}_{1} \tilde{u}_{1}^{T} \right\|_{2} \le \epsilon := \text{constant} \times B \sqrt{\frac{\log m}{m}}$$

• non-uniform row sampling $\tilde{u}_1 = u_i / \sqrt{p_i}$ with probability $p_i \forall i$.

• Using leverage score distribution $p_i = \frac{\|u_i\|_2^2}{\sum_{j=1}^n \|u_j\|_2^2}$ we have $B = \max_i \|u_i\|_2 / \|u_i\|_2 \sum_{j=1}^n \|u_j\|_2^2 = \operatorname{tr} U^T U = d$

• Using uniform distribution $p_i = \frac{1}{n}$, we have $B = \max_i ||u_i||_2 / \sqrt{1/n} = n\mu(U)$ where $\mu(U) := \max_i ||u_i||_2$ is the coherence parameter of U.

▶ Picking $m = c \frac{B^2}{\epsilon^2} \log(\frac{B^2}{\epsilon^2})$ we obtain the sampling results $m = \frac{d \log d}{\epsilon^2}$ and $m = \frac{\mu n \log(\mu n)}{\epsilon^2}$ respectively.

19/32

²Can be improved to a high probability result: Sampling from Large Matrices: An Approach through Geometric Functional Analysis, Rudelson and Vershynin, 2007

Computational complexity

- For ϵ accuracy in the objective value, i.e., $||A\hat{x} Ax^*||_2 \le \epsilon$
- Gradient Descent (GD) total computational cost $\kappa nd \log(\frac{1}{\epsilon})$
- Gradient Descent with Momentum (GD-M) total computational cost √κnd log(¹/_ε)
- Note that we need to know eigenvalues of A^TA to find optimal step-sizes for GD and GD-M. Conjugate Gradient (CG) doesn't require the eigenvalues explicitly and results in √knd log(¹/_ϵ) operations
- Randomized Newton Method (using randomized Hadamard based fast JL, m = constant × d log d) total computational cost nd log n + d³ log d + ndlog(¹/_ϵ) for n ≫ d, the complexity is O(nd log(1/ϵ))

uniform row sampling, leverage score sampling and other sketching matrices also work with different sketch sizes.

Preconditioning Least Squares Problems

$$\min_{x} \|Ax - b\|_2^2$$

- Convergence of GD, GD-M or CG depend on the condition number $\kappa := \frac{\lambda_{\max}(A^T A)}{\lambda_{\min}(A^T A)}$.
- We can precondition the problem by a variable change x = Rx' where R is an invertible matrix. Then, we form the problem

$$\min_{x'} \|ARx' - b\|_2^2$$

whose solution is $(AR)^{\dagger}b = (R^{T}A^{T}AR)^{-1}R^{T}A^{T}b = R^{-1}(A^{T}A)^{-1}A^{T}b = R^{-1}A^{\dagger}b.$

Then we can recover $x^* = Rx' = RR^{-1}A^{\dagger}b = A^{\dagger}b$

Condition number of AR can be better than A for carefully chosen preconditioners R, and hence GD, GD-M or CG can converge faster. Ideally, eigenvalues of R^TA^TAR should be all near 1.

Preconditioning Trade-off

original problem

$$\min_{x} \|Ax - b\|_2^2$$

preconditioned problem

$$\min_{x'} \|ARx' - b\|_2^2$$

▶ R = I is the original problem $R^T A^T A R = A^T A$. Condition number is the same.

► $R = (A^T A)^{-1}$ perfectly preconditions since $(A^T A)^{-1/2} A^T A (A^T A)^{-1/2} = I$. Condition number is 1.

Recovering the solution requires solving $A^T A x = x'!$ we need a cheaply invertible matrix that preconditions the eigenvalues

• example: diagonal preconditioner $R = \operatorname{diag}(A)^{-1}$

Randomized Preconditioners

original problem

$$\min_{x} \|Ax - b\|_2^2$$

$$\min_{x'} \|ARx' - b\|_2^2$$

Condition number of $R^T A^T A R$ should be small. exploring different options

R i.i.d random, e.g., Gaussian?

Randomized Preconditioners

original problem

$$\min_{x} \|Ax - b\|_2^2$$

$$\min_{x'} \|ARx' - b\|_2^2$$

Condition number of $R^T A^T A R$ should be small. exploring different options

$$\triangleright R = A^T S^T S A?$$

Randomized Preconditioners

original problem

$$\min_{x} \|Ax - b\|_2^2$$

$$\min_{x'} \|ARx' - b\|_2^2$$

Condition number of $R^T A^T A R$ should be small. exploring different options

▶ *R* i.i.d random, e.g., Gaussian?

$$\triangleright R = A^T S^T S A?$$

• Let $R = (A^T S^T S A)^{-1/2}$. Then we have

$$R^{\mathsf{T}}A^{\mathsf{T}}AR = (A^{\mathsf{T}}S^{\mathsf{T}}SA)^{-1/2}A^{\mathsf{T}}A(A^{\mathsf{T}}S^{\mathsf{T}}SA)^{-1/2}$$

Hessian Square Root $(A^T S^T S A)^{-1/2}$ Preconditioner

- Let $R = (A^T S^T S A)^{-1/2}$. Then we have
- ► Note that R^TA^TAR and ARR^TA^T have the same non-zero eigenvalues
- $ARR^T A^T = A(A^T S^T S A)^{-1/2} (A^T S^T S A)^{-1/2} A^T = A(A^T S^T S A)^{-1} A^T$

Hessian Square Root $(A^T S^T S A)^{-1/2}$ Preconditioner

- Let $R = (A^T S^T S A)^{-1/2}$. Then we have
- ► Note that $R^T A^T A R$ and $A R R^T A^T$ have the same non-zero eigenvalues
- $ARR^T A^T = A(A^T S^T S A)^{-1/2} (A^T S^T S A)^{-1/2} A^T = A(A^T S^T S A)^{-1/2} A^T = A(A^T S^T S A)^{-1} A^T$
- ► Let $A = U\Sigma V^T$ the Singular Value Decomposition Then we have $A(A^T S^T S A)^{-1} A^T = U(U^T S^T S U)^{-1} U^T$, whose eigenvalues are the eigenvalues of $(U^T S^T S U)^{-1}$
- Therefore, subspace approximation ||U^TS^TSU − I||₂ ≤ ε implies that eigenvalues of U^TS^TSU are in (1 − ε, 1 + ε).
- Consequently, eigenvalues of $R^T A^T A R$ are also in $(1 \epsilon, 1 + \epsilon)$, which improves the condition number to $\kappa(AR) = \frac{1+\epsilon}{1-\epsilon}$

Non-uniform row sampling, uniform row sampling (with extra coherence dependence), JL embeddings will work

Implementing Randomized Preconditioning

- Generate a sketching matrix S. Recall $R = (A^T S^T S A)^{-1/2}$
- Apply QR factorization to SA to obtain $SA = Q_{SA}R_{SA}$ where R_{SA} is upper triangular and Q_{SA} is orthonormal.

Observe that

 $R = (A^T S^T S A)^{-1/2} = (R_{SA}^T Q_{SA}^T Q_{SA} R_{SA})^{-1} = (R_{SA}^T R_{SA})^{-1/2}$ and an inverse square root is given by R_{SA}

Since R_{SA} is upper triangular, we can apply it to vectors in linear time using back-substitution.

Implementing Randomized Preconditioning

- Generate a sketching matrix S. Recall $R = (A^T S^T S A)^{-1/2}$
- Apply QR factorization to SA to obtain $SA = Q_{SA}R_{SA}$ where R_{SA} is upper triangular and Q_{SA} is orthonormal.

Observe that

 $R = (A^T S^T S A)^{-1/2} = (R_{SA}^T Q_{SA}^T Q_{SA} R_{SA})^{-1} = (R_{SA}^T R_{SA})^{-1/2}$ and an inverse square root is given by R_{SA}

Since R_{SA} is upper triangular, we can apply it to vectors in linear time using back-substitution.

Solve

$$\min_{x'} \|ARx' - b\|_2^2$$

using Conjugate Gradient method or Gradient Descent with Momentum (since we know about the eigenvalues). Note that each steps requires gradient calculation $R^T A^T (A(Rx) - b)$, which can be done with back-substitution and matrix vector products

Randomized Newton vs Preconditioning

- Both approaches remove the condition number dependence
- Randomized Preconditioning requires QR decomposition and back-substitution steps
- Randomized Newton (also called Iterative Hessian Sketch) is more flexible since QR decomposition is not required. We can use approximate sub-solvers

$$x^{t+1} = x_t - (A^T S^T S A)^{-1} A^T (A x_t - b)$$

= $x_t + \arg \min_z \frac{1}{2} \|SAz\|_2^2 + z^T (A^T (A x_t - b))$

- ► e.g., CG to approximately solve the system (A^TS^TSA)z = A^T(Ax_t − b)
- Furthermore, Randomized Newton generalizes to arbitrary functions: HessianSketch⁻¹gradient

Gradient Descent for Convex Optimization Problems

Strong convexity

A convex function f is called strongly convex if there exists two positive constants $\beta_-\leq\beta_+$ such that

$$\beta_{-} \leq \lambda_{i} \left(\nabla^{2} f(x) \right) \leq \beta_{+}$$

for every x in the domain of f

 $\lambda_{\min}(\nabla^2 f(x)) \ge \beta_ \lambda_{\max}(\nabla^2 f(x)) \le \beta_+$ Gradient Descent for Strongly Convex Functions

$$x_{t+1} = x_t - \mu_t \nabla f(x_t)$$

Suppose that f is strongly convex with parameters β₋, β₊ let f^{*} := min_x f(x)

Theorem

Set constant step-size
$$\mu_t = \frac{1}{\beta_+}$$

 $f(x_{t+1}) - f^* \le (1 - \frac{\beta_-}{\beta_+})(f(x_t) - f^*)$
recursively applying we get

►
$$f(x_M) - f^* \le (1 - \frac{\beta_-}{\beta_+})^M (f(x_0) - f^*)$$

Gradient Descent for Strongly Convex Functions

Gradient Descent with Momentum (Heavy Ball Method) for Strongly Convex Functions

$$x_{t+1} = x_t - \mu \nabla f(x_t) + \beta (x_t - x_{t-1})$$

• step-size parameter
$$\mu = \frac{4}{(\sqrt{\beta_+} + \sqrt{\beta_-})^2}$$

- momentum parameter $\beta = \max \left(|1 \sqrt{\mu \beta_-}|, |1 \sqrt{\mu \beta_+}| \right)^2$
- For optimizing functions f(Ax) computational complexity O(√κnd log(¹/_ϵ)) where κ = ^{β+}/_{β−}

Questions?

References

- Improved analysis of the subsampled randomized Hadamard transform JA Tropp - Advances in Adaptive Data Analysis, 2011 - World Scientific
- Sampling from large matrices: An approach through geometric functional analysis M Rudelson, R Vershynin -Journal of the ACM (JACM), 2007
- A fast randomized algorithm for overdetermined linear least-squares regression V Rokhlin, M Tygert. Proceedings of the National Academy of Sciences, 2008
- OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings Jelani Nelson, Huy L. Nguyen, 2012
- Iterative Hessian sketch: Fast and accurate solution approximation for constrained least-squares M Pilanci, MJ Wainwright - The Journal of Machine Learning Research, 2016