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Randomized Linear Algebra and Optimization
Lecture 14: Second-Order Optimization Algorithms,
Strong Convexity and Randomized Preconditioners
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Recap: Gradient Descent with momentum

I minx f (x)

I Gradient Descent with Momentum

xt+1 = xt − µt∇f (xt) + βt(xt − xt−1)

I the term βt(xt − xt−1) is referred to as momentum
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Computational complexity

I Gradient Descent (β = 0) total computational cost
κnd log(1ε ) for ε accuracy

I Gradient Descent with Momentum total computational cost√
κnd log(1ε ) for ε accuracy

I we need to know eigenvalues of ATA to find optimal step-sizes

I Conjugate Gradient doesn’t require the eigenvalues explicitly
and results in

√
κnd log(1ε ) operations
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Newton’s Method

I Suppose f is twice differentiable, and consider a second order
Taylor approximation at a point xt

f (y) ≈ f (xt) +∇f (xt)
T (y − xt) +

1

2
(y − x t)∇2f (x t)(y − x t)

I and minimize the approximation

I xt+1 = xt − µt
(
∇2f (x)

)−1∇f (x)

I for minimizing functions f (Ax) where A ∈ Rn×d

I complexity O(nd2) to form the Hessian and O(d3) to invert

I or alternatively O(nd2) for factorizing the Hessian
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Newton’s Method in one dimension
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Newton’s Method for least squares converges in one step

I Consider

min
x

1

2
‖Ax − b‖22︸ ︷︷ ︸

f (x)

I gradient ∇f (x) = AT (Ax − b)

I Hessian ∇2f (x) = ATA

I Gradient Descent:

xt+1 = xt − µAT (Axt − b)

I Newton’s Method:

xt+1 = xt − µ(ATA)−1AT (Axt − b)

I fixed step size µt = µ
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Newton’s Method with Random Projection

I Randomized Newton’s Method:

xt+1 = xt − µ(ATSTSA)−1AT (Axt − b)

I fixed step size µt = µ

I computational cost:

I O(nd log n) to form SA using Fast Johnson Lindenstrauss
Transform and O(d3) to invert (ATSTSA)−1

I alternatively O(md2) to factorize SA
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Analyzing Newton’s Method with Random Projection

I Randomized Newton’s Method:

xt+1 = xt − µ(ATSTSA)−1AT (Axt − b)

I Define ∆t = A(xt − x∗)

∆t+1 = ∆t − µA(ATSTSA)−1AT∆t

I after M iterations

∆M = (I − µA(ATSTSA)−1AT )M∆0
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Analyzing Newton’s Method with Random Projection

I Let A = UΣV T be the Singular Value Decomposition of A

I A(ATSTSA)−1AT = U(UTSTSU)UT

∆M = (I − µU(UTSTSU)−1UT )M∆0

I ∆t ∈ Range(A) implies UUT∆t = ∆t and ‖UT∆t‖2 = ‖∆t‖2

UT∆M = UT (I − µU(UTSTSU)−1UT )MUUT∆0

I Note that
UT (I − µU(UTSTSU)−1UT ) = (I − µ(UTSTSU)−1)UT

UT∆M = (I − µ(UTSTSU)−1)MUT∆0

I ‖∆M‖2 ≤ σmax

(
I − µ(UTSTSU)−1)M

)
‖∆0‖2

I ‖∆M‖2 ≤ maxi=1,...,d

∣∣1− µλi ((UTSTSU)−1)
∣∣M ‖∆0‖2
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Eigenvalues of randomly projected matrices

I λi ((UTSTSU)−1) = λi (U
TSTSU)−1

I Recall that Approximate Matrix Multiplication for UTU = I

‖UTU︸ ︷︷ ︸
I

−UTSTSU‖F ≤ ε implies

σmax

(
I − UTSTSU

)
≤ ε

I which is identical to
∣∣1− λi (UTSTSU)

∣∣ ≤ ε ∀i = 1, ..., d

I All eigenvalues of UTSTSU are in the range [1− ε, 1 + ε]
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Optimal step-size

I All eigenvalues of UTSTSU are in the range [1− ε, 1 + ε]

I All eigenvalues of (UTSTSU)−1 are in the range [ 1
1−ε ,

1
1+ε ]

‖∆M‖2 ≤ max
i=1,...,d

∣∣∣1− µλi ((UTSTSU)−1)
∣∣∣M ‖∆0‖2 (1)

= max

(∣∣∣∣1− µ 1

1− ε

∣∣∣∣ , ∣∣∣∣1− µ 1

1 + ε

∣∣∣∣)M

‖∆0‖2 (2)

I optimal step-size that minimizes the upper-bound satisfies∣∣∣∣1− µ∗ 1

1− ε

∣∣∣∣ =

∣∣∣∣1− µ∗ 1

1 + ε

∣∣∣∣
I µ∗ = 2

1
1−ε

+ 1
1+ε

= (1− ε)(1 + ε)
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Convergence rate

I µ∗ = 2
1

1−ε
+ 1

1+ε

= (1− ε)(1 + ε)

‖∆M‖2 ≤ max

(∣∣∣∣1− µ 1

1− ε

∣∣∣∣ , ∣∣∣∣1− µ 1

1 + ε

∣∣∣∣)M

‖∆0‖2 (3)

= max (|1− (1 + ε)| , |1− (1− ε)|)M ‖∆0‖2 (4)

= εM‖∆0‖2 (5)



14 / 32

Row Sampling Setch

I We may pick a row sampling matrix S

as in Approximate Matrix Multiplication ATSTSA ≈ ATA

x t+1 = xt − µ(ATSTSA)−1AT (Axt − b)

I ATSTSA is a subsampled Hessian
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How to choose the sketch

I According to the convergence analysis we need
‖UTSTSU − UTU‖2 ≤ ε for some ε > 0 since

‖∆M‖2 ≤ σmax

(
I − µ(UTSTSU)−1)M

)
‖∆0‖2

I Row sampling

I Nonuniform row sampling. Probabilities pi =
‖ui‖22∑n
j=1 ‖uj‖

2
2

(leverage scores, or optimal AMM for UTU = I )
I Uniform row sampling

I Johnson Lindenstrauss Embeddings:
I i.i.d. Gaussian, Rademacher
I Sparse JL Transform (one/few non-zeros per column)
I Fast JL Transform (PHD based on Randomized Hadamard)
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Number of samples/sketches required

I In order to obtain the approximation

E‖UTSTSU − UTU‖2 ≤ ε

I Row sampling

I Nonuniform row sampling with pi =
‖ui‖22∑n
j=1 ‖uj‖22

m = d log d
ε2 samples are needed

I Uniform row sampling

m = µn log(µn)
ε2 samples are needed where

µ := µ(U) := maxi ‖ui‖22
I Johnson Lindenstrauss Embeddings:

I i.i.d. Gaussian, Rademacher m = d
ε2

I Sparse JL Transform (one non-zeros per column) m = d2

ε2

I Sparse JL Transform (O( log d
ε ) non-zeros per column) m = d

ε2

I Fast JL Transform (Randomized Hadamard) m = d log d
ε2
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Coherence of a matrix

I Coherence parameter is defined as
µ := µ(U) = maxi=1,...,n ‖ui‖22

I Note that ui
>ui = e>i UU>ei = e>i Pei = Pii and trP = d

therefore d
n ≤ µU ≤ 1

I Uniform row sampling
m = µn log(µn)

ε2
samples are required to obtain the subspace

embedding
‖UTSTSU − UTU‖2 ≤ ε

m can be between d log d
ε2

(best case) and n log d
ε2

(worst case)
depending on the distribution of ‖ui‖22

I Non-uniform (leverage score) sampling, or JL embeddings
does not have the µ(U) coherence factor
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How to prove sampling results: Matrix Concentration
I Suppose that we sample the rows of U non-uniformly wrt a

distribution pi , i = 1, ., , n. How large is the spectral norm
error ‖UTSTSU − UTU‖2? In AMM, we considered
Frobenius norm error.

I Concentration of sums of matrices

Theorem:1 Let ũ1, ..., ũm be i.i.d. vectors such that
‖ũi‖2 ≤ B, ∀i , then

E
∥∥∥ 1

m

m∑
j=1

ũj ũ
T
j − Eũ1ũT1

∥∥∥
2
≤ ε := constant× B

√
logm

m

I non-uniform row sampling ũ1 = ui/
√
pi with probability pi ∀i .

Note that
Eu1uT1 =

∑n
i=1

ui√
pi

ui
T
√
pi
pi =

∑n
i=1 uiu

T
i = UTU = I .

B = maxi ‖ui‖2/
√
pi , ideally needs to be small.

1Can be improved to a high probability result: Sampling from Large Matrices: An
Approach through Geometric Functional Analysis, Rudelson and Vershynin, 2007
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How to prove sampling results: Matrix Concentration

Theorem:2 Let ũ1, ..., ũm be i.i.d. vectors such that
‖ũi‖2 ≤ B, ∀i , then

E
∥∥∥ 1

m

m∑
j=1

ũj ũ
T
j − Eũ1ũT1

∥∥∥
2
≤ ε := constant× B

√
logm

m

I non-uniform row sampling ũ1 = ui/
√
pi with probability pi ∀i .

I Using leverage score distribution pi =
‖ui‖22∑n
j=1 ‖uj‖22

we have

B = maxi ‖ui‖2/‖ui‖2
∑n

j=1 ‖uj‖22 = trUTU = d
I Using uniform distribution pi = 1

n , we have

B = maxi ‖ui‖2/
√

1/n = nµ(U) where µ(U) := maxi ‖ui‖2 is
the coherence parameter of U.

I Picking m = c B2

ε2 log(B2

ε2 ) we obtain the sampling results

m = d log d
ε2 and m = µn log(µn)

ε2 respectively.

2Can be improved to a high probability result: Sampling from Large Matrices: An
Approach through Geometric Functional Analysis, Rudelson and Vershynin, 2007
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Computational complexity

I For ε accuracy in the objective value, i.e., ‖Ax̂ − Ax∗‖2 ≤ ε
I Gradient Descent (GD) total computational cost κnd log(1ε )

I Gradient Descent with Momentum (GD-M) total
computational cost

√
κnd log(1ε )

I Note that we need to know eigenvalues of ATA to find
optimal step-sizes for GD and GD-M. Conjugate Gradient
(CG) doesn’t require the eigenvalues explicitly and results in√
κnd log(1ε ) operations

I Randomized Newton Method (using randomized Hadamard
based fast JL, m = constant× d log d) total computational
cost nd log n + d3 log d + ndlog(1ε ) for n� d , the complexity
is O(nd log(1/ε))

uniform row sampling, leverage score sampling and other
sketching matrices also work with different sketch sizes.
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Preconditioning Least Squares Problems

min
x
‖Ax − b‖22

I Convergence of GD, GD-M or CG depend on the condition

number κ := λmax(ATA)
λmin(ATA)

.

I We can precondition the problem by a variable change x = Rx ′

where R is an invertible matrix. Then, we form the problem

min
x ′
‖ARx ′ − b‖22

whose solution is (AR)†b = (RTATAR)−1RTATb =
R−1(ATA)−1ATb = R−1A†b.

Then we can recover x∗ = Rx ′ = RR−1A†b = A†b
I Condition number of AR can be better than A for carefully

chosen preconditioners R, and hence GD, GD-M or CG can
converge faster. Ideally, eigenvalues of RTATAR should be all
near 1.
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Preconditioning Trade-off

I original problem

min
x
‖Ax − b‖22

I preconditioned problem

min
x ′
‖ARx ′ − b‖22

I R = I is the original problem RTATAR = ATA. Condition
number is the same.

I R = (ATA)−1 perfectly preconditions since
(ATA)−1/2ATA(ATA)−1/2 = I . Condition number is 1.

I Recovering the solution requires solving ATAx = x ′!

we need a cheaply invertible matrix that preconditions the
eigenvalues

I example: diagonal preconditioner R = diag(A)−1
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Randomized Preconditioners

I original problem

min
x
‖Ax − b‖22

I preconditioned problem

min
x ′
‖ARx ′ − b‖22

Condition number of RTATAR should be small.
exploring different options

I R i.i.d random, e.g., Gaussian?

I R = ATSTSA?
I Let R = (ATSTSA)−1/2. Then we have

RTATAR = (ATSTSA)−1/2ATA(ATSTSA)−1/2
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Hessian Square Root (ATSTSA)−1/2 Preconditioner

I Let R = (ATSTSA)−1/2. Then we have

I Note that RTATAR and ARRTAT have the same non-zero
eigenvalues

I ARRTAT = A(ATSTSA)−1/2(ATSTSA)−1/2AT =
A(ATSTSA)−1AT

I Let A = UΣV T the Singular Value Decomposition

Then we have A(ATSTSA)−1AT = U(UTSTSU)−1UT ,
whose eigenvalues are the eigenvalues of (UTSTSU)−1

I Therefore, subspace approximation ‖UTSTSU − I‖2 ≤ ε
implies that eigenvalues of UTSTSU are in (1− ε, 1 + ε).

I Consequently, eigenvalues of RTATAR are also in
(1− ε, 1 + ε), which improves the condition number to
κ(AR) = 1+ε

1−ε
Non-uniform row sampling, uniform row sampling (with extra
coherence dependence), JL embeddings will work
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Implementing Randomized Preconditioning
I Generate a sketching matrix S . Recall R = (ATSTSA)−1/2

I Apply QR factorization to SA to obtain SA = QSARSA where
RSA is upper triangular and QSA is orthonormal.

Observe that
R = (ATSTSA)−1/2 = (RT

SAQ
T
SAQSARSA)−1 = (RT

SARSA)−1/2

and an inverse square root is given by RSA

Since RSA is upper triangular, we can apply it to vectors in
linear time using back-substitution.

I Solve

min
x ′
‖ARx ′ − b‖22

using Conjugate Gradient method or Gradient Descent with
Momentum (since we know about the eigenvalues). Note that
each steps requires gradient calculation RTAT (A(Rx)− b),
which can be done with back-substitution and matrix vector
products
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Randomized Newton vs Preconditioning

I Both approaches remove the condition number dependence

I Randomized Preconditioning requires QR decomposition and
back-substitution steps

I Randomized Newton (also called Iterative Hessian Sketch) is
more flexible since QR decomposition is not required. We can
use approximate sub-solvers

x t+1 = xt − (ATSTSA)−1AT (Axt − b)

= xt + arg min
z

1

2
‖SAz‖22 + zT (AT (Axt − b))

I e.g., CG to approximately solve the system
(ATSTSA)z = AT (Axt − b)

I Furthermore, Randomized Newton generalizes to arbitrary
functions: HessianSketch−1gradient
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Gradient Descent for Convex Optimization Problems

I Strong convexity

A convex function f is called strongly convex if there exists
two positive constants β− ≤ β+ such that

β− ≤ λi
(
∇2f (x)

)
≤ β+

for every x in the domain of f

I Equivalent to

λmin(∇2f (x)) ≥ β−
λmax(∇2f (x)) ≤ β+
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Gradient Descent for Strongly Convex Functions

I xt+1 = xt − µt∇f (xt)

I Suppose that f is strongly convex with parameters β−, β+

let f ∗ := minx f (x)

Theorem

I Set constant step-size µt = 1
β+

f (xt+1)− f ∗ ≤ (1− β−
β+

)(f (xt)− f ∗)

recursively applying we get

I f (xM)− f ∗ ≤ (1− β−
β+

)M(f (x0)− f ∗)
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Gradient Descent for Strongly Convex Functions

I xt+1 = xt − µ∇f (xt)

I step-size µ = 1
β+

I f (xM)− f ∗ ≤ (1− β−
β+

)M(f (x0)− f ∗)

I For optimizing functions f (Ax)

computational complexity O(κnd log(1ε ))

where κ = β+
β−
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Gradient Descent with Momentum (Heavy Ball Method)
for Strongly Convex Functions

I xt+1 = xt − µ∇f (xt) + β(xt − xt−1)

I step-size parameter µ = 4

(
√
β++
√
β−)2

I momentum parameter β = max
(
|1−

√
µβ−|, |1−

√
µβ+|

)2
I For optimizing functions f (Ax)

computational complexity O(
√
κnd log(1ε ))

where κ = β+
β−
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Questions?
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