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Randomized Linear Algebra and Optimization
Lecture 15: Randomized Newton's Method



Recap: Gradient Descent for Convex Optimization
Problems

» Strong convexity

A convex function f is called strongly convex if there exists
two positive constants S_ < 4 such that

B <X (VP(x) < By

for every x in the domain of f
» Equivalent to

Amin(V2£(x)) > B

Amax(V2f(x)) < B4



Gradient Descent for Strongly Convex Functions

> Xpr1 = Xp — ,UtVf(Xt)
» Suppose that f is strongly convex with parameters S_, 54
let £* := miny f(x)
Theorem
» Set constant step-size iy = é
Flxep) — < (1- %;)(f(Xr) —f7)
recursively applying we get
> Fxm) — F* < (1= 59)M(F(x0) — F¥)



Gradient Descent for Strongly Convex Functions

vV vy VvYyy

Xt4+1 = Xt — ,LLVf(Xt)

step-size pu = i

fom) = £ < (1= G)M(F(x0) — )
For optimizing functions f(Ax)
computational complexity O(rnd log(1))

— B+
where Kk = 7



Gradient Descent with Momentum (Heavy Ball Method)
for Strongly Convex Functions

» xer1 = xe — uVIF(xe) + B(xe — xe—1)

P step-size parameter = PR S —
(VBi++/B-)?

2
» momentum parameter [ = max <]1 — /b, |1 — \/uﬁ+|>

» For optimizing functions f(Ax)
computational complexity O(\/Endlog(%))

where K = g—f



Newton's Method

» Suppose f is twice differentiable, and consider a second order
Taylor approximation at a point x;

1
F(y) = Flxe) + VF(x) T(y = x) + 5 (v = x)VF(x)(y = x°)
> minimizing the approxirr;ation yields
xey1 = xe + (V2F(x)) " VF(x)
» x;11 = x¢ — tA; where A; = (VZf(x))_1 V£(x)
> for functions f(Ax) where A € R

complexity O(nd?) to form the Hessian and O(d?) to invert

or alternatively O(nd?) for factorizing the Hessian



Choosing step-sizes: backtracking (Armijo) line search

given a descent direction Az for f at z € dom f, a € (0,0.5), 8 € (0,1).
t:=1.
while f(z +tAz) > f(z) + atVf(z) Az, t:= Bt



Newton's Method with Line Search

given a starting point x € dom f, tolerance ¢ > 0.

repeat
1. Compute the Newton step and decrement.

Azyy :==V2f(2) 7'V f(z); A= Vf(x)"V2f(x) V().
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x 4 tAxns.



Newton's Method for Strongly Convex Functions

» Strong convexity with parameters 5_, 34
» Additional condition: Lipschitz continuity of the Hessian

IV2£(x) = V2 (y)ll2 < Llix - yII3

for some constant L > 0

» Theorem The number of iterations for ¢ approximate solution
in objective value is bounded by

f(xo) — f*
B-/B%

T := constant x + log, logy ( 0)

where ¢g = 233 /2.
» Computational complexity: O((nd? + nd)T)



Self-concordant Functions in R

» A function f : R — R is self-concordant when f is convex and
f”/(X) < 2f”(X)3/2

for all x in the domain of f.
» examples: linear and quadratic functions, negative logarithm

» One can use a constant k other than 2 in the definition



Self-concordant Functions in R

» A function f : R — R is self-concordant when it is
self-concordant along every line, i.e.,
(i) f is convex

(i) g(t) := f(x + tv) is self-concordant for all x in the domain of
f and all v



Self-concordant Functions in R

» Scaling with a positive factor of at least 1 preserves
self-concordance:

f is self concordant — «f is self concordant for o >1
» Addition preserves self-concordance
fi and f, is self concordant — f; + f» is self concordant

» if f(x) is self-concordant, affine transformations
g(x) := f(Ax + b) are also self-concordant



Newton's Method for Self-concordant Functions

» Suppose f is a self-concordant function
» Theorem

Newton's method with line search finds an e approximate
point in less than

1
T := constant X (f(xg) — f*) + log, log, =
€

iterations.

» Computational complexity: T x (cost of Newton Step)

(Nesterov and Nemirovski)



Interior Point Programming

» Logarithmic Barrier Method
Goal:

min fo(x) s.t. fi(x) <0,i=1,...,n
X
Indicator penalized form

min fo(x) + Y I(fi(x))
i=1

where T is a {0, 00} valued indicator function



Interior Point Programming

» Logarithmic Barrier Method
Goal:

min fo(x) s.t. fi(x) <0,i=1,...,n

Indicator penalized form
min fo(x) + > I(fi(x))
i=1

where T is a {0, 00} valued indicator function

» Approximation via —t — log(—-)

mlnfo —tZIog x))

> t > 0 is the barrier parameter



Interior Point Programming

21



Linear Programming
» LP in standard form where A € R"*d

min ¢’ x

Ax<b
» Logarithmic barrier approximation
n
min, ¢ x — tz log(b; — a] x)

i=1

» scaling with p = %

n
min, pc’ x — Z log(b; — a] x)
i=1

» self-concordant function



Linear Programming
» LP in standard form where A € R"*d

min ¢’ x

Ax<b

» Logarithmic barrier approximation

n
min, ¢ x — tz log(b; — a] x)
i=1

» scaling with p = %

n
min, pc’ x — Z log(b; — a] x)
i=1

» self-concordant function
» Hessian V2f(x) = Aleag<

operations

o= T )2) A takes O(nd?)



min ¢’

Az<b

— Exact Newton

n
uce'r — Zlog(bi — aiTx)
i=1

Q>




Randomized Newton's Method

> Suppose we want to find min,cc g(x)
» Randomized Newton's Method

1 ~
1 —argmin (Vg(x?), x — x) + = (x — x*) T V2g(x?)(x — x%)

X
xeC 2

> V2g(xt) ~ V2g(xt) is an approximate Hessian
> e.g., sketching @2g(xt) = (Vzg(xt))l/zsTS(Vzg(Xt))l/2



Interior Point Methods for Linear Programming

> Hessian of f(x) = c"x— > 7, log(b; — a/ x)

1
2 _ AT g



Interior Point Methods for Linear Programming

> Hessian of f(x) = c"x— > 7, log(b; — a/ x)

1
2 _ AT g

» Root of the Hessian

1
V2 (x))Y? = di () A,
(Vo£(x)) g \ b= 2T



Interior Point Methods for Linear Programming

> Hessian of f(x) = c"x— > 7, log(b; — a/ x)

1
2 _ AT g

» Root of the Hessian

1
V2 (x))Y? = di () A,
(Vo£(x)) g \ b= 2T

» Sketch of the Hessian

SH(V2f(x))Y? = Stdiag <1> A
|bi — a x|

takes O(md?) operations



min ¢’

Az<b

— Exact Newton
——— Newton Sketch

cTa:—l-l Zlog(bi B aiTx)
i=1

Q>




Trial 1

— Exact Newton
——Newton Sketch
Trial 2

Trial 3

(a) sketch size m = d

Q>




—Exact Newton
Trial 1 _—

Trial 3

\\‘

) sketch size m =

— Exact Newton
——Newton Sketch
Trial 1 _—

L B

(b) sketch size m = 4d

p—

Q>



Convergence of the Randomized Newton's Method

» Suppose f is a self-concordant function and S is a random
projection matrix (e.g. Randomized Hadamard, Gaussian,
CountSketch)

» Theorem

Randomized Newton's method with line search finds an ¢
approximate point in less than

1
T := constant x (f(xp) — f*) + log, =
€

iterations.

» Computational Complexity: nd log n + nd log, %



Questions?



