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Randomized Linear Algebra and Optimization
Lecture 15: Randomized Newton’s Method



Recap: Gradient Descent for Convex Optimization
Problems

I Strong convexity

A convex function f is called strongly convex if there exists
two positive constants β− ≤ β+ such that

β− ≤ λi
(
∇2f (x)

)
≤ β+

for every x in the domain of f

I Equivalent to

λmin(∇2f (x)) ≥ β−
λmax(∇2f (x)) ≤ β+



Gradient Descent for Strongly Convex Functions

I xt+1 = xt − µt∇f (xt)

I Suppose that f is strongly convex with parameters β−, β+
let f ∗ := minx f (x)

Theorem

I Set constant step-size µt = 1
β+

f (xt+1)− f ∗ ≤ (1− β−
β+

)(f (xt)− f ∗)

recursively applying we get

I f (xM)− f ∗ ≤ (1− β−
β+

)M(f (x0)− f ∗)



Gradient Descent for Strongly Convex Functions

I xt+1 = xt − µ∇f (xt)

I step-size µ = 1
β+

I f (xM)− f ∗ ≤ (1− β−
β+

)M(f (x0)− f ∗)

I For optimizing functions f (Ax)

computational complexity O(κnd log(1ε ))

where κ = β+
β−



Gradient Descent with Momentum (Heavy Ball Method)
for Strongly Convex Functions

I xt+1 = xt − µ∇f (xt) + β(xt − xt−1)

I step-size parameter µ = 4

(
√
β++
√
β−)2

I momentum parameter β = max
(
|1−

√
µβ−|, |1−

√
µβ+|

)2

I For optimizing functions f (Ax)

computational complexity O(
√
κnd log(1ε ))

where κ = β+
β−



Newton’s Method

I Suppose f is twice differentiable, and consider a second order
Taylor approximation at a point xt

f (y) ≈ f (xt) +∇f (xt)
T (y − xt) +

1

2
(y − x t)∇2f (x t)(y − x t)

I minimizing the approximation yields
xt+1 = xt +

(
∇2f (x)

)−1∇f (x)

I xt+1 = xt − t∆t where ∆t :=
(
∇2f (x)

)−1∇f (x)

I for functions f (Ax) where A ∈ Rn×d

complexity O(nd2) to form the Hessian and O(d3) to invert

or alternatively O(nd2) for factorizing the Hessian



Choosing step-sizes: backtracking (Armijo) line search



Newton’s Method with Line Search



Newton’s Method for Strongly Convex Functions

I Strong convexity with parameters β−, β+
I Additional condition: Lipschitz continuity of the Hessian

‖∇2f (x)−∇2f (y)‖2 ≤ L‖x − y‖22

for some constant L > 0

I Theorem The number of iterations for ε approximate solution
in objective value is bounded by

T := constant× f (x0)− f ∗

β−/β2+
+ log2 log2

(ε0
ε

)

where ε0 = 2β3−/L
2.

I Computational complexity: O((nd2 + nd)T )



Self-concordant Functions in R

I A function f : R→ R is self-concordant when f is convex and

f ′′′(x) ≤ 2f ′′(x)3/2

for all x in the domain of f .

I examples: linear and quadratic functions, negative logarithm

I One can use a constant k other than 2 in the definition



Self-concordant Functions in Rd

I A function f : Rd → R is self-concordant when it is
self-concordant along every line, i.e.,

(i) f is convex
(ii) g(t) := f (x + tv) is self-concordant for all x in the domain of

f and all v



Self-concordant Functions in Rd

I Scaling with a positive factor of at least 1 preserves
self-concordance:

f is self concordant =⇒ αf is self concordant for α ≥ 1

I Addition preserves self-concordance

f1 and f2 is self concordant =⇒ f1 + f2 is self concordant

I if f (x) is self-concordant, affine transformations
g(x) := f (Ax + b) are also self-concordant



Newton’s Method for Self-concordant Functions

I Suppose f is a self-concordant function

I Theorem

Newton’s method with line search finds an ε approximate
point in less than

T := constant× (f (x0)− f ∗) + log2 log2
1

ε

iterations.

I Computational complexity: T× (cost of Newton Step)

(Nesterov and Nemirovski)



Interior Point Programming

I Logarithmic Barrier Method

Goal:

min
x

f0(x) s.t. fi (x) ≤ 0, i = 1, ..., n

Indicator penalized form

min
x

f0(x) +
n∑

i=1

I(fi (x))

where I is a {0,∞} valued indicator function

I Approximation via −t − log(−·)

min
x

f0(x)− t
n∑

i=1

log(−fi (x))

I t > 0 is the barrier parameter
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Interior Point Programming



Linear Programming

I LP in standard form where A ∈ Rn×d

min
Ax≤b

cT x

I Logarithmic barrier approximation

minx c
T x − t

n∑

i=1

log(bi − aTi x)

I scaling with µ = 1
t

minx µc
T x −

n∑

i=1

log(bi − aTi x)

I self-concordant function

I Hessian ∇2f (x) = ATdiag
(

1
(bi−aTi x)2

)
A takes O(nd2)

operations
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Exact Newton

∑n

i=1

log(bi − ai
T x)

c 

cT x −

min cT x
Ax≤b

µ



Randomized Newton’s Method

I Suppose we want to find minx∈C g(x)

I Randomized Newton’s Method

x t+1 = arg min
x∈C
〈∇g(x t), x − x t〉+

1

2
(x − x t)T ∇̃2g(x t)(x − x t)

I ∇̃2g(x t) ≈ ∇2g(x t) is an approximate Hessian

I e.g., sketching ∇̃2g(x t) = (∇2g(x t))1/2STS(∇2g(x t))1/2



Interior Point Methods for Linear Programming

I Hessian of f (x) = cT x −∑n
i=1 log(bi − aTi x)

∇2f (x) = ATdiag

(
1

(bi − aTi x)2

)
A ,

I Root of the Hessian

(∇2f (x))1/2 = diag

(
1

|bi − aTi x |

)
A ,

I Sketch of the Hessian

S t(∇2f (x))1/2 = S tdiag

(
1

|bi − aTi x |

)
A

takes O(md2) operations
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Exact Newton

Newton Sketch

∑n

i=1

log(bi − ai
T x)

c 

cT x −µ

min cT x
Ax≤b



Trial 1 Trial 2 Trial 3

Exact Newton
Newton Sketch

(a) sketch size m = d

Trial 1 Trial 2 Trial 3

Exact Newton
Newton Sketch

(b) sketch size m = 4d
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Convergence of the Randomized Newton’s Method

I Suppose f is a self-concordant function and S is a random
projection matrix (e.g. Randomized Hadamard, Gaussian,
CountSketch)

I Theorem

Randomized Newton’s method with line search finds an ε
approximate point in less than

T := constant× (f (x0)− f ∗) + log2
1

ε

iterations.

I Computational Complexity: nd log n + nd log2
1
ε



Questions?


