EE270
Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Feb 18 2020
Randomized Linear Algebra and Optimization
Lecture 15: Randomized Newton’s Method
Recap: Gradient Descent for Convex Optimization Problems

- **Strong convexity**
 A convex function f is called strongly convex if there exists two positive constants $\beta_- \leq \beta_+$ such that

 $$\beta_- \leq \lambda_i \left(\nabla^2 f(x) \right) \leq \beta_+$$

 for every x in the domain of f

- **Equivalent to**

 $\lambda_{\text{min}}(\nabla^2 f(x)) \geq \beta_-$

 $\lambda_{\text{max}}(\nabla^2 f(x)) \leq \beta_+$
Gradient Descent for Strongly Convex Functions

\[x_{t+1} = x_t - \mu_t \nabla f(x_t) \]

Suppose that \(f \) is strongly convex with parameters \(\beta_- \), \(\beta_+ \) let \(f^* := \min_x f(x) \)

Theorem

Set constant step-size \(\mu_t = \frac{1}{\beta_+} \)

\[f(x_{t+1}) - f^* \leq (1 - \frac{\beta_-}{\beta_+})(f(x_t) - f^*) \]

recursively applying we get

\[f(x_M) - f^* \leq (1 - \frac{\beta_-}{\beta_+})^M (f(x_0) - f^*) \]
Gradient Descent for Strongly Convex Functions

- $x_{t+1} = x_t - \mu \nabla f(x_t)$
- step-size $\mu = \frac{1}{\beta_+}$
- $f(x_M) - f^* \leq (1 - \frac{\beta_-}{\beta_+})^M (f(x_0) - f^*)$
- For optimizing functions $f(Ax)$
 computational complexity $O(\kappa nd \log(\frac{1}{\epsilon}))$
 where $\kappa = \frac{\beta_+}{\beta_-}$
Gradient Descent with Momentum (Heavy Ball Method) for Strongly Convex Functions

$x_{t+1} = x_t - \mu \nabla f(x_t) + \beta (x_t - x_{t-1})$

- step-size parameter $\mu = \frac{4}{(\sqrt{\beta_+} + \sqrt{\beta_-})^2}$

- momentum parameter $\beta = \max \left(|1 - \sqrt{\mu \beta_-}|, |1 - \sqrt{\mu \beta_+}| \right)^2$

- For optimizing functions $f(Ax)$
 computational complexity $O(\sqrt{\kappa} nd \log(\frac{1}{\epsilon}))$

where $\kappa = \frac{\beta_+}{\beta_-}$
Newton’s Method

- Suppose \(f \) is twice differentiable, and consider a second order Taylor approximation at a point \(x_t \)

\[
f(y) \approx f(x_t) + \nabla f(x_t)^T (y - x_t) + \frac{1}{2} (y - x^t) \nabla^2 f(x^t) (y - x^t)
\]

- minimizing the approximation yields

\[
x_{t+1} = x_t + (\nabla^2 f(x))^\ominus \nabla f(x)
\]

- \(x_{t+1} = x_t - t \Delta_t \) where \(\Delta_t := (\nabla^2 f(x))^\ominus \nabla f(x) \)

- for functions \(f(Ax) \) where \(A \in \mathbb{R}^{n \times d} \)

complexity \(O(nd^2) \) to form the Hessian and \(O(d^3) \) to invert

or alternatively \(O(nd^2) \) for factorizing the Hessian
Choosing step-sizes: backtracking (Armijo) line search

given a descent direction Δx for f at $x \in \text{dom } f$, $\alpha \in (0, 0.5)$, $\beta \in (0, 1)$.
$t := 1$.
while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^T \Delta x$,
$t := \beta t$.
Newton’s Method with Line Search

given a starting point \(x \in \text{dom} \, f \), tolerance \(\epsilon > 0 \).

repeat

1. Compute the Newton step and decrement.
 \[
 \Delta x_{nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).
 \]

2. Stopping criterion. quit if \(\lambda^2 / 2 \leq \epsilon \).

3. Line search. Choose step size \(t \) by backtracking line search.

4. Update. \(x := x + t \Delta x_{nt} \).
Newton’s Method for Strongly Convex Functions

- **Strong convexity with parameters** β_-, β_+
- **Additional condition:** Lipschitz continuity of the Hessian

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \leq L\|x - y\|_2^2$$

for some constant $L > 0$

- **Theorem** The number of iterations for ϵ approximate solution in objective value is bounded by

$$T := \text{constant} \times \frac{f(x_0) - f^*}{\beta_- / \beta_+^2} + \log_2 \log_2 \left(\frac{\epsilon_0}{\epsilon} \right)$$

where $\epsilon_0 = 2\beta_3^3 / L^2$.

- **Computational complexity:** $O((nd^2 + nd)T)$
A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant when f is convex and

$$f'''(x) \leq 2f''(x)^{3/2}$$

for all x in the domain of f.

- examples: linear and quadratic functions, negative logarithm
- One can use a constant k other than 2 in the definition
A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is self-concordant when it is self-concordant along every line, i.e.,

(i) f is convex
(ii) $g(t) := f(x + tv)$ is self-concordant for all x in the domain of f and all v
Self-concordant Functions in \mathbb{R}^d

- Scaling with a positive factor of at least 1 preserves self-concordance:

 \[f \text{ is self concordant} \quad \implies \quad \alpha f \text{ is self concordant} \quad \text{for } \alpha \geq 1 \]

- Addition preserves self-concordance

 \[f_1 \text{ and } f_2 \text{ is self concordant} \quad \implies \quad f_1 + f_2 \text{ is self concordant} \]

- If $f(x)$ is self-concordant, affine transformations $g(x) := f(Ax + b)$ are also self-concordant
Newton’s Method for Self-concordant Functions

- Suppose f is a self-concordant function

- **Theorem**

 Newton’s method with line search finds an ϵ approximate point in less than

 $$T := \text{constant} \times (f(x_0) - f^*) + \log_2 \log_2 \frac{1}{\epsilon}$$

 iterations.

- **Computational complexity**: $T \times (\text{cost of Newton Step})$

 (Nesterov and Nemirovski)
Interior Point Programming

▶ Logarithmic Barrier Method

Goal:

$$\min_{x} f_0(x) \text{ s.t. } f_i(x) \leq 0, \; i = 1, \ldots, n$$

Indicator penalized form

$$\min_{x} f_0(x) + \sum_{i=1}^{n} \mathbb{I}(f_i(x))$$

where \mathbb{I} is a $\{0, \infty\}$ valued indicator function
Interior Point Programming

- Logarithmic Barrier Method

Goal:

\[
\min_x f_0(x) \text{ s.t. } f_i(x) \leq 0, \ i = 1, \ldots, n
\]

Indicator penalized form

\[
\min_x f_0(x) + \sum_{i=1}^{n} \mathbb{I}(f_i(x))
\]

where \(\mathbb{I} \) is a \(\{0, \infty\} \) valued indicator function

- Approximation via \(-t - \log(-\cdot)\)

\[
\min_x f_0(x) - t \sum_{i=1}^{n} \log(-f_i(x))
\]

\(t > 0 \) is the barrier parameter
Interior Point Programming
Linear Programming

- LP in standard form where \(A \in \mathbb{R}^{n \times d} \)

\[
\min_{A_\mathbf{x} \leq \mathbf{b}} c^T \mathbf{x}
\]

- Logarithmic barrier approximation

\[
\min_{\mathbf{x}} c^T \mathbf{x} - t \sum_{i=1}^{n} \log(b_i - a_i^T \mathbf{x})
\]

- Scaling with \(\mu = \frac{1}{t} \)

\[
\min_{\mathbf{x}} \mu c^T \mathbf{x} - \sum_{i=1}^{n} \log(b_i - a_i^T \mathbf{x})
\]

- Self-concordant function

\[
\nabla^2 f(x) = A^T \text{diag} \left(\frac{1}{(b_i - a_i^T \mathbf{x})^2} \right) A \text{ takes } O(nd^2) \text{ operations}
\]
Linear Programming

- LP in standard form where $A \in \mathbb{R}^{n \times d}$

$$\min_{Ax \leq b} c^T x$$

- Logarithmic barrier approximation

$$\min_{x} c^T x - t \sum_{i=1}^{n} \log(b_i - a_i^T x)$$

- Scaling with $\mu = \frac{1}{t}$

$$\min_{x} \mu c^T x - \sum_{i=1}^{n} \log(b_i - a_i^T x)$$

- Self-concordant function

- Hessian $\nabla^2 f(x) = A^T \text{diag} \left(\frac{1}{(b_i - a_i^T x)^2} \right)$ A takes $O(nd^2)$ operations
\[
\min c^T x \\
Ax \leq b
\]

\[
\mu c^T x - \sum_{i=1}^{n} \log(b_i - a_i^T x)
\]
Randomized Newton’s Method

- Suppose we want to find \(\min_{x \in \mathcal{C}} g(x) \)
- Randomized Newton’s Method

\[
x^{t+1} = \arg \min_{x \in \mathcal{C}} \langle \nabla g(x^t), x - x^t \rangle + \frac{1}{2} (x - x^t)^T \tilde{\nabla}^2 g(x^t)(x - x^t)
\]

- \(\tilde{\nabla}^2 g(x^t) \approx \nabla^2 g(x^t) \) is an approximate Hessian
- e.g., sketching \(\tilde{\nabla}^2 g(x^t) = (\nabla^2 g(x^t))^{1/2} S^T S (\nabla^2 g(x^t))^{1/2} \)
Hessian of $f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$

$$\nabla^2 f(x) = A^T \text{diag} \left(\frac{1}{(b_i - a_i^T x)^2} \right) A ,$$
Interior Point Methods for Linear Programming

- Hessian of $f(x) = c^T x - \sum_{i=1}^{n} \log(b_i - a_i^T x)$

 $$
 \nabla^2 f(x) = A^T \text{diag} \left(\frac{1}{(b_i - a_i^T x)^2} \right) A ,
 $$

- Root of the Hessian

 $$
 (\nabla^2 f(x))^{1/2} = \text{diag} \left(\frac{1}{|b_i - a_i^T x|} \right) A ,
 $$
Hessian of $f(x) = c^T x - \sum_{i=1}^{n} \log(b_i - a_i^T x)$

$$\nabla^2 f(x) = A^T \text{diag} \left(\frac{1}{(b_i - a_i^T x)^2} \right) A,$$

Root of the Hessian

$$\left(\nabla^2 f(x)\right)^{1/2} = \text{diag} \left(\frac{1}{|b_i - a_i^T x|} \right) A,$$

Sketch of the Hessian

$$S^t (\nabla^2 f(x))^{1/2} = S^t \text{diag} \left(\frac{1}{|b_i - a_i^T x|} \right) A$$

takes $O(md^2)$ operations
\[
\begin{align*}
\min & \quad c^T x \\
Ax & \leq b \\
\end{align*}
\]

\[
c^T x - \mu \sum_{i=1}^{n} \log(b_i - a_i^T x)
\]
(a) sketch size $m = d$
(a) sketch size $m = d$

(b) sketch size $m = 4d$
Suppose f is a self-concordant function and S is a random projection matrix (e.g. Randomized Hadamard, Gaussian, CountSketch)

Theorem
Randomized Newton’s method with line search finds an ϵ approximate point in less than

$$T := \text{constant} \times (f(x_0) - f^*) + \log_2 \frac{1}{\epsilon}$$

iterations.

Computational Complexity: $nd \log n + nd \log_2 \frac{1}{\epsilon}$
Questions?