EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Feb 18 2020

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Randomized Linear Algebra and Optimization Lecture 15: Randomized Newton's Method

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Recap: Gradient Descent for Convex Optimization Problems

\blacktriangleright Strong convexity

A convex function f is called strongly convex if there exists two positive constants $\beta_-\leq \beta_+$ such that

$$
\beta_- \leq \lambda_i \left(\nabla^2 f(x) \right) \leq \beta_+
$$

KORKARYKERKER POLO

for every x in the domain of f

 \blacktriangleright Equivalent to

 $\lambda_{\min}(\nabla^2 f(x)) \geq \beta_ \lambda_{\max}(\nabla^2 f(x)) \leq \beta_+$ Gradient Descent for Strongly Convex Functions

$$
\blacktriangleright x_{t+1} = x_t - \mu_t \nabla f(x_t)
$$

 \triangleright Suppose that f is strongly convex with parameters β_-, β_+ let $f^* := \min_x f(x)$

Theorem

\n- Set constant step-size
$$
\mu_t = \frac{1}{\beta_+}
$$
\n $f(x_{t+1}) - f^* \leq (1 - \frac{\beta_-}{\beta_+})(f(x_t) - f^*)$ \n recursively applying we get\n
\n- $f(x_M) - f^* \leq (1 - \frac{\beta_-}{\beta_-})^M(f(x_0) - f^*)$ \n
\n

$$
f(x_M) - f^* \leq (1 - \frac{\beta_-}{\beta_+})^M (f(x_0) - f^*
$$

Gradient Descent for Strongly Convex Functions

►
$$
x_{t+1} = x_t - \mu \nabla f(x_t)
$$

\n>step-size $\mu = \frac{1}{\beta_+}$
\n► $f(x_M) - f^* \leq (1 - \frac{\beta_-}{\beta_+})^M (f(x_0) - f^*)$
\n► For optimizing functions $f(Ax)$
\ncomputational complexity $O(\kappa nd \log(\frac{1}{\epsilon}))$
\nwhere $\kappa = \frac{\beta_+}{\beta_-}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Gradient Descent with Momentum (Heavy Ball Method) for Strongly Convex Functions

$$
\blacktriangleright x_{t+1} = x_t - \mu \nabla f(x_t) + \beta (x_t - x_{t-1})
$$

Step-size parameter $\mu = \frac{4}{\sqrt{2}}$ $\frac{1}{(\sqrt{\beta_{+}}+\sqrt{\beta_{-}})^{2}}$

I momentum parameter $\beta = \max \left(|1 - \sqrt{\mu \beta_-}|, |1 - \sqrt{\mu \beta_+}| \right)^2$

KID KA KERKER E VOOR

 \blacktriangleright For optimizing functions $f(Ax)$ computational complexity $O(\sqrt{\kappa}nd\log(\frac{1}{\epsilon}))$ where $\kappa = \frac{\beta_{\pm}}{\beta_{\pm}}$ β_-

Newton's Method

 \triangleright Suppose f is twice differentiable, and consider a second order Taylor approximation at a point x_t

$$
f(y) \approx f(x_t) + \nabla f(x_t)^T (y - x_t) + \frac{1}{2} (y - x^t) \nabla^2 f(x^t) (y - x^t)
$$

 \blacktriangleright minimizing the approximation yields $x_{t+1} = x_t + (\nabla^2 f(x))^{-1} \nabla f(x)$

$$
\blacktriangleright x_{t+1} = x_t - t\Delta_t \text{ where } \Delta_t := (\nabla^2 f(x))^{-1} \nabla f(x)
$$

ightharpoonup for functions $f(Ax)$ where $A \in \mathbb{R}^{n \times d}$ complexity $O(nd^2)$ to form the Hessian and $O(d^3)$ to invert or alternatively $O(nd^2)$ for factorizing the Hessian

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

Choosing step-sizes: backtracking (Armijo) line search

given a descent direction Δx for f at $x \in \text{dom } f$, $\alpha \in (0, 0.5)$, $\beta \in (0, 1)$. $t:=1.$ while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^T \Delta x$, $t := \beta t$.

Newton's Method with Line Search

given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

 $\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$ 2. Stopping criterion. quit if $\lambda^2/2 < \epsilon$.

KORKARYKERKER POLO

- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{nt}$.

Newton's Method for Strongly Convex Functions

- **► Strong convexity with parameters** β_-, β_+
- \triangleright Additional condition: Lipschitz continuity of the Hessian

$$
\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2^2
$$

for some constant $L > 0$

Theorem The number of iterations for ϵ approximate solution in objective value is bounded by

$$
\mathcal{T} := \text{constant} \times \frac{f(x_0) - f^*}{\beta_-/\beta_+^2} + \log_2 \log_2 \left(\frac{\epsilon_0}{\epsilon}\right)
$$

KORKAR KERKER SAGA

where $\epsilon_0 = 2\beta_-^3/L^2$.

Computational complexity: $O((nd^2 + nd)T)$

Self-concordant Functions in R

A function $f : \mathbb{R} \to \mathbb{R}$ is self-concordant when f is convex and $f'''(x) \leq 2f''(x)^{3/2}$

for all x in the domain of f .

 \blacktriangleright examples: linear and quadratic functions, negative logarithm

 \triangleright One can use a constant k other than 2 in the definition

Self-concordant Functions in \mathbb{R}^d

- A function $f : \mathbb{R}^d \to \mathbb{R}$ is self-concordant when it is self-concordant along every line, i.e.,
	- (i) f is convex (ii) $g(t) := f(x + tv)$ is self-concordant for all x in the domain of f and all v

Self-concordant Functions in \mathbb{R}^d

 \triangleright Scaling with a positive factor of at least 1 preserves self-concordance:

f is self concordant $\implies \alpha f$ is self concordant for $\alpha \geq 1$

▶ Addition preserves self-concordance

 f_1 and f_2 is self concordant $\implies f_1 + f_2$ is self concordant

KELK KØLK VELKEN EL 1990

 \blacktriangleright if $f(x)$ is self-concordant, affine transformations $g(x) := f(Ax + b)$ are also self-concordant

Newton's Method for Self-concordant Functions

 \blacktriangleright Suppose f is a self-concordant function

\blacktriangleright Theorem

Newton's method with line search finds an ϵ approximate point in less than

$$
T := \text{constant} \times (f(x_0) - f^*) + \log_2 \log_2 \frac{1}{\epsilon}
$$

KORKARYKERKER POLO

iterations.

▶ Computational complexity: $T \times$ (cost of Newton Step) (Nesterov and Nemirovski)

Interior Point Programming

In Logarithmic Barrier Method Goal:

$$
\min_{x} f_0(x) \text{ s.t. } f_i(x) \leq 0, i = 1, ..., n
$$

Indicator penalized form

$$
\min_{x} f_0(x) + \sum_{i=1}^n \mathbb{I}(f_i(x))
$$

where I is a $\{0, \infty\}$ valued indicator function

Interior Point Programming

In Logarithmic Barrier Method Goal:

$$
\min_{x} f_0(x) \text{ s.t. } f_i(x) \leq 0, i = 1, ..., n
$$

Indicator penalized form

$$
\min_{x} f_0(x) + \sum_{i=1}^n \mathbb{I}(f_i(x))
$$

where I is a $\{0, \infty\}$ valued indicator function

 \triangleright Approximation via $-t - log(-)$

$$
\min_{x} f_0(x) - t \sum_{i=1}^n \log(-f_i(x))
$$

 \blacktriangleright t > 0 is the barrier parameter

Interior Point Programming

イロト イ母 トイミト イミト ニヨー りんぺ

Linear Programming

► LP in standard form where $A \in R^{n \times d}$

$$
\min_{Ax \leq b} c^T x
$$

 \blacktriangleright Logarithmic barrier approximation

$$
\min_x c^T x - t \sum_{i=1}^n \log(b_i - a_i^T x)
$$

► scaling with
$$
\mu = \frac{1}{t}
$$

$$
\min_{x} \mu c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)
$$

 \blacktriangleright self-concordant function

Linear Programming

► LP in standard form where $A \in R^{n \times d}$

$$
\min_{Ax \leq b} c^T x
$$

 \blacktriangleright Logarithmic barrier approximation

$$
\min_x c^T x - t \sum_{i=1}^n \log(b_i - a_i^T x)
$$

► scaling with
$$
\mu = \frac{1}{t}
$$

$$
\min_{x} \mu c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)
$$

 \blacktriangleright self-concordant function

$$
\blacktriangleright \text{ Hessian } \nabla^2 f(x) = A^T \text{ diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A \text{ takes } O(nd^2)
$$
\n
$$
\text{operations}
$$

Randomized Newton's Method

Suppose we want to find
$$
\min_{x \in \mathcal{C}} g(x)
$$

I Randomized Newton's Method

$$
x^{t+1} = \arg\min_{x \in C} \ \langle \nabla g(x^t), x - x^t \rangle + \frac{1}{2} (x - x^t)^T \tilde{\nabla}^2 g(x^t) (x - x^t)
$$

►
$$
\tilde{\nabla}^2 g(x^t) \approx \nabla^2 g(x^t)
$$
 is an approximate Hessian
\n▶ e.g., sketching $\tilde{\nabla}^2 g(x^t) = (\nabla^2 g(x^t))^{1/2} S^T S (\nabla^2 g(x^t))^{1/2}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Interior Point Methods for Linear Programming

Hessian of
$$
f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)
$$

$$
\nabla^2 f(x) = A^T \text{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A ,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Interior Point Methods for Linear Programming

$$
\sum \text{Hessian of } f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)
$$

$$
\nabla^2 f(x) = A^T \text{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A,
$$

$$
\blacktriangleright
$$
 Root of the Hessian

$$
(\nabla^2 f(x))^{1/2} = \text{diag}\left(\frac{1}{|b_i - a_i^T x|}\right) A,
$$

Interior Point Methods for Linear Programming

$$
\sum \text{Hessian of } f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)
$$

$$
\nabla^2 f(x) = A^T \text{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A,
$$

 \blacktriangleright Root of the Hessian

$$
(\nabla^2 f(x))^{1/2} = \text{diag}\left(\frac{1}{|b_i - a_i^T x|}\right) A,
$$

 \blacktriangleright Sketch of the Hessian

$$
S^{t}(\nabla^{2} f(x))^{1/2} = S^{t} diag\left(\frac{1}{|b_{i} - a_{i}^{T} x|}\right) A
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

takes $O(md^2)$ operations

Convergence of the Randomized Newton's Method

 \triangleright Suppose f is a self-concordant function and S is a random projection matrix (e.g. Randomized Hadamard, Gaussian, CountSketch)

\blacktriangleright Theorem

Randomized Newton's method with line search finds an ϵ approximate point in less than

$$
T := \text{constant} \times (f(x_0) - f^*) + \log_2 \frac{1}{\epsilon}
$$

KORKARYKERKER POLO

iterations.

Computational Complexity: *nd* $\log n + nd \log_2 \frac{1}{\epsilon}$ ϵ

Questions?

KOKK@KKEKKEK E 1990