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Empirical Risk Minimization

I Let {ai , yi}, i = 1, ...., n be training data

I Empirical risk minimization

min
x

1

n

n∑
i=1

f (x , ai , yi )

I Examples:

Least-Squares problems: f (x , ai , yi ) = (aTi x − yi )
2

Logistic regression: f (x , ai , yi ) = log(1 + ea
T
i xiyi )

I empirical risk approximates the population (expected) risk:

Ef (x , ai , yi )

where the expectation is taken over the data
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Stochastic Programming

min
x

Ef (x , ai , yi )︸ ︷︷ ︸
F (x)

I A simple approach:

xt+1 = xt − µ∇F (xt)

= xt − µEf (x , ai , yi )

≈ xt − µf (x , ait , yit )

where it is a random index



Stochastic Gradient Descent (SGD)

min
x

Ef (x , ai , yi )︸ ︷︷ ︸
F (x)

Consider the iterative algorithm

xt+1 = xt − µtgt

I where gt is an unbiased estimate of ∇F (xt)

Egt = ∇F (xt)



SGD for Empirical Risk Minimization

I Let {ai , yi}, i = 1, ...., n be training data

I Empirical risk minimization

min
x

1

n

n∑
i=1

f (x , ai , yi )

I Choose an index it uniformly at random and let

xt+1 = xt − µt∇t f (x , ait , yit )



Convergence of SGD for strongly convex problems

min
x

Ef (x , ai , yi )︸ ︷︷ ︸
F (x)

I SGD with constant step size µ

xt+1 = xt − µ∇t f (x , ait , yit )

Assumptions

I F is strongly convex with parameters β− and β+
I gt is an unbiased estimate of ∇F (xt) and its holds that

I E‖gt‖22 ≤ σ2g + cg‖∇F (x)‖22
I step size µ ≤ 1

β+cg

I Theorem:

E [F (xt)− F (x∗)] ≤ µ
β+σ

2
g

2β−
+ (1− µβ−)t(F (x0)− F (x∗))
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Convergence of SGD for strongly convex problems

Assumptions

I F is strongly convex with parameters β− and β+
I gt is an unbiased estimate of ∇F (xt) and its holds that

I E‖gt‖22 ≤ σ2g + cg‖∇F (x)‖22
I Theorem:

E [F (xt)− F (x∗)] ≤ µ
β+σ

2
g

2β−
+ (1− µβ−)t(F (x0)− F (x∗))

I converges to a neighborgood of the optimum x∗

I converges to x∗ when the σg = 0, i.e., gradient is noise-free

I in practice we can reduce the stepsize whenever the progress
stalls



Convergence of SGD with diminishing step-sizes

Assumptions

I F is strongly convex with parameters β− and β+
I gt is an unbiased estimate of ∇F (xt) and its holds that

I E‖gt‖22 ≤ σ2g
I µt = µ

t+1 for some µ > 1
2β−

I Theorem:

E [F (xt)− F (x∗)] ≤ Cµ
t + 1

where Cµ = max(
2µ2σ2

g

2β−µ−1 , ‖x0 − x∗‖22)



Comparison with Gradient Descent

I Stochastic Gradient Descent
I per iteration cost O(d)
I number of iterations O( 1

ε )
I total cost O( d

ε )

I Gradient Descent
I per iteration cost O(nd)
I number of iterations O(log( 1

ε ))
I total cost O(nd log( 1

ε ))

SGD can be faster for large n and low accuracy ε



SGD for Least Squares Problems

min ‖Ax − b‖22 =
n∑

i=1

(aTi x − bi )
2

I Gradient: ∇f (x) = AT (Ax − b) =
∑n

i=1 ai (a
T
i x − bi )

I A stochastic gradient: gt = ait (a
T
it
x − bit ) where it is a

random index

I SGD iterations

xt+1 = xt − µt(aTit xt − bit )ai

I Sketched Gradient Descent

xt+1 = xt − µtATST
t St(Axt − b)

where EST
t St = I



SGD for Least Squares Problems

min ‖Ax − b‖22 =
n∑

i=1

(aTi x − bi )
2

I SGD iterations

xt+1 = xt − µt(aTit xt − bit )ai

I step-size µt = 1
‖ait ‖

2
2

xt+1 = xt −
aTit xt − bit
‖ait‖22

ai



Convergence Analysis

I Assume that b = Ax∗ and define ∆t = A(xt − x∗)

I ∆t+1 = ∆t −
ait a

T
it

‖ait ‖
2
2
∆t = Pt∆t

where Pt := I −
ait a

T
it

‖ait ‖
2
2

is a projection matrix

I after T iterations

∆T = PT−1 . . .P1∆1



Convergence Analysis: General Sampling Distributions

I Consider a sampling distribution p1, ..., pn, i.e.,

we sample the i-th data row ai , yi with probability pi
I SGD iterations with sampling distribution {pi}ni=1

xt+1 = xt − µtgt

I where gt = 1
pit

(aTit xt − bit )ai

I unbiased gradient estimate

Egt = AT (Axt − b)



Convergence Analysis: General Sampling Distributions

I Assume that b = Ax∗ and define ∆t = A(xt − x∗)

I set step-size µt = 1

xt+1 = xt −
1

pit
(aTit xt − bit )ai

I ∆t+1 = ∆t −
ait a

T
it

pit
∆t

E‖∆t+1‖22 = E‖∆t −
aita

T
it

pit
∆t‖22

= E‖∆t‖22 − 2∆T
t

aita
T
it

pit
∆t + ‖

aita
T
it

pit
∆t‖22

= E∆T
t

(
I − 2

aita
T
it

pit
+

aita
T
it
‖ait‖22
p2it

)
∆t



Convergence Analysis: General Sampling Distributions

I Taking expectations

E‖∆t+1‖22 = ∆T
t

(
I −

n∑
i=1

2aia
T
i +

n∑
i=1

aita
T
it
‖ai‖22
pi

)
∆t

I note that right-hand-side, hence the optimal distribution
depends on the previous error ∆t

I we can minimize the upper-bound with respect to the
sampling distribution

∆T
t

(
n∑

i=1

aita
T
it
‖ai‖22
pi

)
∆t ≤ λmax

(
n∑

i=1

aita
T
it
‖ai‖22
pi

)
‖∆t‖22
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∆T
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(
n∑

i=1
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T
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pi

)
∆t ≤ λmax

(
n∑

i=1

aita
T
it
‖ai‖22
pi

)
‖∆t‖22

≤ Tr

(
n∑

i=1

aita
T
it
‖ai‖22
pi

)
‖∆t‖22



Convergence Analysis: General Sampling Distributions

I minimizing the upper-bound

min
p
∑

i=1 pi=1,pi≥0
Tr

(
n∑

i=1

aita
T
it
‖ai‖22
pi

)

I equivalent to

min
p
∑

i=1 pi=1,pi≥0

n∑
i=1

‖ai‖42
pi

I optimal sampling distribution

p∗i =
‖ai‖22∑n
j=1 ‖aj‖22

=
‖ai‖22
‖A‖2F

I same distribution as in approximate matrix multiplication
ATA ∼ ATSTSA
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Randomized Kaczmarz Algorithm
I optimal sampling distribution

p∗i =
‖ai‖22∑n
j=1 ‖aj‖22

=
‖ai‖22
‖A‖2F

I consider step-size µt

I xt+1 = xt − µt 1
pit
ait (a

T
it
x − bit ) = xt − µt

‖A‖2F
‖ait ‖

2
2
ait (a

T
it
x − bit )

I set the step-size µt = 1
‖A‖2F

I this is called Randomized Kaczmarz Algorithm
I xt+1 = xt − 1

‖ait ‖
2
2
ait (a

T
it
x − bit )

I convergence analysis yields

∆t+1 =

(
I −

aia
T
i

‖ait‖22

)
∆t

= Pt∆t

I where Pt = I − aia
T
i

‖ait ‖
2
2



Convergence rate

E‖∆t+1‖22 = ∆T
t (I − 1

‖A‖2F
ATA)∆t

≥
(
1− λmin

‖A‖2F

)
‖∆t‖22

I recursively applying the above bound and taking conditional
expectations

after T iterations we obtain

E‖∆T‖22 ≤
(
1− λmin

‖A‖2F

)T


