EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, March 9 2021

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Randomized Linear Algebra and Optimization Lecture 17: Randomized Singular Value Decomposition and CX Decomposition

KORK ERKER ADAM ADA

- Suppose that A is an $n \times d$ data matrix of rank r
- \triangleright Singular Value Decomposition (SVD) provides the best rank k approximation:

Let $A = U \Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$ where $\{\sigma_i\}_{i=1}^r$ are the singular values sorted in non-increasing order Define $A_k := U_k \Sigma_k V_k := \sum_{i=1}^k \sigma_i u_i v_i^T$. We have $||A - A_k||_2 \leq \sigma_{k+1}$

$$
\blacktriangleright
$$
 computational cost of computing the SVD is $O(nd^2)$ for $n \geq d$

KORKAR KERKER SAGA

- ► Given a large matrix $A \in \mathbb{R}^{n \times d}$
- idea: sample some columns of A to get $C \in \mathbb{R}^{n \times m}$

- ► Given a large matrix $A \in \mathbb{R}^{n \times d}$
- idea: sample some columns of A to get $C \in \mathbb{R}^{n \times m}$
- \triangleright form an approximation of A using these sampled columns $C = AS$

$$
\min_{X} \|CX - A\|_F^2 = \min_{X} \|ASX - A\|_F^2
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• Given a large matrix
$$
A \in \mathbb{R}^{n \times d}
$$

- idea: sample some columns of A to get $C \in \mathbb{R}^{n \times m}$
- \triangleright form an approximation of A using these sampled columns $C = AS$

$$
\min_{X} \|CX - A\|_F^2 = \min_{X} \|ASX - A\|_F^2
$$

 \triangleright column-wise decomposable problem

$$
\arg\min_{X^{(j)}} \sum_{k=1}^d \|ASX^{(k)} - A^{(k)}\|_2^2 = (AS)^{\dagger} A^{(k)}
$$

KORKARYKERKER POLO

• Given a large matrix
$$
A \in \mathbb{R}^{n \times d}
$$

- idea: sample some columns of A to get $C \in \mathbb{R}^{n \times m}$
- \triangleright form an approximation of A using these sampled columns $C = AS$

$$
\min_{X} \|CX - A\|_F^2 = \min_{X} \|ASX - A\|_F^2
$$

 \triangleright column-wise decomposable problem

$$
\arg\min_{X^{(j)}} \sum_{k=1}^{d} \|ASX^{(k)} - A^{(k)}\|_2^2 = (AS)^{\dagger} A^{(k)}
$$

$$
\arg\min_{X} \|ASX - A\|_F^2 = (AS)^{\dagger}A
$$

IF matrix [A](#page-0-0) is approximated by $(AS)(AS)^{\dagger}A = CC^{\dagger}A$ $(AS)(AS)^{\dagger}A = CC^{\dagger}A$ $(AS)(AS)^{\dagger}A = CC^{\dagger}A$ $(AS)(AS)^{\dagger}A = CC^{\dagger}A$ $(AS)(AS)^{\dagger}A = CC^{\dagger}A$

► Given a large matrix $A \in \mathbb{R}^{n \times d}$

idea: sample some columns of A to get $C \in \mathbb{R}^{n \times m}$

D approximation $CC^{\dagger}A \approx A$

► calculate top left singular values of $C \approx U_k \Sigma_k V_k^T$

\n- then we have
$$
CC^{\dagger} \approx U_k U_k^T
$$
\n- Lemma 1 (Drineas et al. 2006)
\n

$$
||A - U_k U_k^T A||_2^2 \le ||A - U_A U_A^T A||_2^2 + 2||AA^T - CC^T||_2
$$

KID KA KERKER KID KO

- \triangleright first term is the approximation error of the exact SVD
- \triangleright second term is the spectral norm approximate matrix multiplication error
- \blacktriangleright approximate matrix multiplication results can be used

$$
\blacktriangleright C = AS, approximation CC^{\dagger} A \approx A
$$

► calculate top left singular values of $C \approx U_k \Sigma_k V_k^T$

$$
\blacktriangleright \text{ approximate } A \approx U_k U_k^T A
$$

Proof of Lemma 1

$$
||A - U_{k}U_{k}^{T}A||_{2}^{2}
$$
\n
$$
= \max_{||x||_{2}=1} ||x^{T}(A - U_{k}U_{k}^{T}A)||_{2}
$$
\n
$$
= \max_{||y||_{2}=||z||_{2}=1, y \in U_{k}, z \in U_{k}^{\perp}} ||(\alpha y + \beta z)^{T}(A - U_{k}U_{k}^{T}A)||_{2}
$$
\n
$$
\leq \max_{||x||_{2}=1, z \in U_{k}^{\perp}} ||z^{T}(A - U_{k}U_{k}^{T}A)||_{2} + \max_{||y||_{2}=1, y \in U_{k}} ||y^{T}(A - U_{k}U_{k}^{T}A)||_{2}
$$
\n
$$
= \max_{||z||_{2}=1, z \in U_{k}^{\perp}} ||z^{T}(A - U_{k}U_{k}^{T}A)||_{2}
$$

Proof of Lemma 1 cont'd

taking squares

$$
\max_{\|z\|_2=1, z\in U_k^{\perp}} \|z^{\mathsf{T}}A\|_2^2
$$
\n
$$
= \max_{\|z\|_2=1, z\in U_k^{\perp}} z^{\mathsf{T}} C C^{\mathsf{T}} z + z^{\mathsf{T}} (A A^{\mathsf{T}} - C C^{\mathsf{T}}) z
$$
\n
$$
\leq \max_{\|z\|_2=1, z\in U_k^{\perp}} \sigma_{k+1}^2(C) + \|A A^{\mathsf{T}} - C C^{\mathsf{T}}\|_2
$$
\n
$$
\leq \max_{\|z\|_2=1, z\in U_k^{\perp}} \sigma_{k+1}^2(A) + 2\|A A^{\mathsf{T}} - C C^{\mathsf{T}}\|_2
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Proof of Lemma 1 cont'd

taking squares

$$
\max_{\|z\|_2=1, z\in U_k^{\perp}} \|z^{\mathsf{T}}A\|_2^2
$$
\n
$$
= \max_{\|z\|_2=1, z\in U_k^{\perp}} z^{\mathsf{T}} C C^{\mathsf{T}} z + z^{\mathsf{T}} (A A^{\mathsf{T}} - C C^{\mathsf{T}}) z
$$
\n
$$
\leq \max_{\|z\|_2=1, z\in U_k^{\perp}} \sigma_{k+1}^2(C) + \|A A^{\mathsf{T}} - C C^{\mathsf{T}}\|_2
$$
\n
$$
\leq \max_{\|z\|_2=1, z\in U_k^{\perp}} \sigma_{k+1}^2(A) + 2\|A A^{\mathsf{T}} - C C^{\mathsf{T}}\|_2
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 \triangleright where we used a matrix perturbation result $\sigma_{k+1}(CC^{\mathsf{T}}) - \sigma_{k+1}(AA^{\mathsf{T}}) \leq ||AA^{\mathsf{T}} - CC^{\mathsf{T}}||_2$ \blacktriangleright Hoffman–Wielandt inequality:

$$
\triangleright \max_k |\sigma_k(Q+E)-\sigma_k(Q)| \leq \|E\|_2
$$

Randomized Matrix Decompositions: Frobenius Norm Error

- ► Given a large matrix $A \in \mathbb{R}^{n \times d}$
- idea: sample some columns of A to get $C \in \mathbb{R}^{n \times m}$
- ▶ approximation $CC^{\dagger}A \approx A$
- ightharpoonup calculate top left singular values of $C = U_k \Sigma_k V_k^T$ Lemma 2 (Drineas et al. 2006)

$$
||A - U_k U_k^T A||_F^2 \le ||A - U_A U_A^T A||_F^2 + 2\sqrt{k}||AA^T - CC^T||_F
$$

 \blacktriangleright approximate matrix multiplication results can be used

Randomized Singular Value Decomposition

- ► Given a large matrix $A \in \mathbb{R}^{n \times d}$
- idea: sample some columns of A to get $C \in \mathbb{R}^{n \times m}$

 $C = AS$

- ▶ approximation $CC^{\dagger} = (AS)(AS)^{\dagger}A \approx A$
- ightharpoonup calculate QR decomposition of $AS = QR$
- In then $QQ^{T}A \approx A$, i.e., Q approximate the range space of A

KELK KØLK VELKEN EL 1990

- calculate the SVD $Q^T A = U \Sigma V^T$
- \blacktriangleright approximate SVD of *A* is $A \approx (QU) \Sigma V^T$

Randomized Singular Value Decomposition

- ► Given a large matrix $A \in \mathbb{R}^{n \times d}$
- idea: sample/sketch some columns of A to get $C \in \mathbb{R}^{n \times m}$

 $C = AS$

- ▶ approximation $CC^{\dagger} = (SA)(SA)^{\dagger}A \approx A$
- ightharpoonup calculate QR decomposition of $SA = QR$
- In then $QQ^{T}A \approx A$, i.e., Q approximate the range space of A

KELK KØLK VELKEN EL 1990

- calculate the SVD $Q^T A = U \Sigma V^T$
- \blacktriangleright approximate SVD of *A* is $A \approx (QU) \Sigma V^T$

Randomized Singular Value Decomposition: Analysis

► Given a large matrix $A \in \mathbb{R}^{n \times d}$

► Generate a Gaussian sketching matrix $S \in d \times m$

 $C = AS$

▶ approximation $CC^{\dagger} = (AS)(AS)^{\dagger}A \approx A$

• calculate QR decomposition of $C = AS = QR$

- In then $QQ^{T}A \approx A$, i.e., Q approximate the range space of A
- calculate the SVD $Q^T A = U \Sigma V^T$
- \blacktriangleright approximate SVD of *A* is $A \approx (QU) \Sigma V^T$

 \blacktriangleright Lemma (Halko et al. 2009)

$$
\mathbb{E} \|A-QQ^{\mathsf{T}}A\|_2 \leq \left(1+\frac{4\sqrt{m}}{m-k-1}\sqrt{\min(n,d)}\right)\sigma_{k+1}
$$

KORKARYKERKER POLO

Randomized Singular Value Decomposition: Comparison

- ► Generate a Gaussian sketching matrix $S \in d \times m$
- calculate QR decomposition of $C = AS = QR$
- calculate the SVD $Q^T A = U \Sigma V^T$
- **D** approximate SVD of A is $A \approx (QU)\Sigma V^T$
- \blacktriangleright Lemma (Halko et al. 2009)

$$
\mathbb{E}\|A-QQ^\mathcal{T} A\|_2 \leq \left(1+\frac{4\sqrt{m}}{m-k-1}\sqrt{\mathsf{min}(n,d)}\right)\sigma_{k+1}
$$

Exact SVD of $A = U_A \Sigma_A V_A^T$ yields

$$
||A - U_A^k (U_A^k)^\mathsf{T} A||_2 \leq \sigma_{k+1}
$$

KORKAR KERKER SAGA

Low-rank matrix approximations

- **Ingular Value Decomposition (SVD)**
- \blacktriangleright $A = U \Sigma V^T$
- ightharpoonup time for $A \in R^{n \times d}$
- best rank-k approximation is $A_k := U_k \Sigma_k V_k^T = \sum_{i=1}^k \sigma_i u_i v_i^T$

KORKARYKERKER POLO

 \blacktriangleright $||A - A_k||_2 \leq \sigma_{k+1}$

Randomized low-rank matrix approximations

- ▶ Randomized (SVD)
- **D** approximation C (e.g. a subset of the columns of A)

KELK KØLK VELKEN EL 1990

- \blacktriangleright AAT \approx CCT
- \blacktriangleright $\tilde{A}_k = CC^{\dagger}A$ is a randomized rank-k approximation
- $\blacktriangleright \|A \tilde{A}_k\|_2^2 \leq \sigma_{k+1}^2 + \epsilon \|A\|_2^2$

Randomized low-rank approximation example

original data

column subsampled data

メロトメ 御 トメ 差 トメ 差 ト

Ğ,

 $2Q$

Randomized low-rank approximation example

メロトメ 御 トメ 差 トメ 差 ト

Ğ,

 $2Q$

Randomized low-rank approximation example

イロト イ部 トイ君 トイ君 トー

 \mathbb{P}^1

 290