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Randomized Linear Algebra and Optimization
Lecture 17: Randomized Singular Value
Decomposition and CX Decomposition



Randomized Matrix Decompositions

I Suppose that A is an n × d data matrix of rank r

I Singular Value Decomposition (SVD) provides the best rank k
approximation:

Let A = UΣV T =
∑r

i=1 σiuiv
T
i where {σi}ri=1 are the

singular values sorted in non-increasing order

Define Ak := UkΣkVk :=
∑k

i=1 σiuiv
T
i . We have

‖A− Ak‖2 ≤ σk+1

I computational cost of computing the SVD is O(nd2) for
n ≥ d



Randomized Matrix Decompositions

I Given a large matrix A ∈ Rn×d

I idea: sample some columns of A to get C ∈ Rn×m

I form an approximation of A using these sampled columns
C = AS

min
X
‖CX − A‖2F = min

X
‖ASX − A‖2F

I column-wise decomposable problem

arg min
X (j)

d∑
k=1

‖ASX (k) − A(k)‖22 = (AS)†A(k)

arg min
X
‖ASX − A‖2F = (AS)†A

I matrix A is approximated by (AS)(AS)†A = CC †A
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Randomized Matrix Decompositions

I Given a large matrix A ∈ Rn×d

I idea: sample some columns of A to get C ∈ Rn×m

I form an approximation of A using these sampled columns
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min
X
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Randomized Matrix Decompositions: Spectral Norm Error

I Given a large matrix A ∈ Rn×d

I idea: sample some columns of A to get C ∈ Rn×m

I approximation CC †A ≈ A

I calculate top left singular values of C ≈ UkΣkV
T
k

I then we have CC † ≈ UkU
T
k

Lemma 1 (Drineas et al. 2006)

‖A− UkU
T
k A‖22 ≤ ‖A− UAU

T
A A‖22 + 2‖AAT − CCT‖2

I first term is the approximation error of the exact SVD

I second term is the spectral norm approximate matrix
multiplication error

I approximate matrix multiplication results can be used



Randomized Matrix Decompositions: Spectral Norm Error

I C = AS , approximation CC †A ≈ A

I calculate top left singular values of C ≈ UkΣkV
T
k

I approximate A ≈ UkU
T
k A

Proof of Lemma 1

‖A− UkU
T
k A‖22

= max
‖x‖2=1

‖xT (A− UkU
T
k A)‖2

= max
‖y‖2=‖z‖2=1,y∈Uk ,z∈U⊥

k

α2+β2=1

‖(αy + βz)T (A− UkU
T
k A)‖2

≤ max
‖z‖2=1,z∈U⊥

k

‖zT (A− UkU
T
k A)‖2+

max
‖y‖2=1,y∈Uk

‖yT (A− UkU
T
k A)‖2

= max
‖z‖2=1,z∈U⊥

k

‖zT (A− UkU
T
k A)‖2



Randomized Matrix Decompositions: Spectral Norm Error

Proof of Lemma 1 cont’d

taking squares

max
‖z‖2=1,z∈U⊥

k

‖zTA‖22

= max
‖z‖2=1,z∈U⊥

k

zTCCT z + zT (AAT − CCT )z

≤ max
‖z‖2=1,z∈U⊥

k

σ2k+1(C ) + ‖AAT − CCT‖2

≤ max
‖z‖2=1,z∈U⊥

k

σ2k+1(A) + 2‖AAT − CCT‖2

I where we used a matrix perturbation result
σk+1(CCT )− σk+1(AAT ) ≤ ‖AAT − CCT‖2

I Hoffman–Wielandt inequality:
I maxk |σk(Q + E )− σk(Q)| ≤ ‖E‖2



Randomized Matrix Decompositions: Spectral Norm Error

Proof of Lemma 1 cont’d

taking squares

max
‖z‖2=1,z∈U⊥

k

‖zTA‖22

= max
‖z‖2=1,z∈U⊥

k

zTCCT z + zT (AAT − CCT )z

≤ max
‖z‖2=1,z∈U⊥

k

σ2k+1(C ) + ‖AAT − CCT‖2

≤ max
‖z‖2=1,z∈U⊥

k

σ2k+1(A) + 2‖AAT − CCT‖2

I where we used a matrix perturbation result
σk+1(CCT )− σk+1(AAT ) ≤ ‖AAT − CCT‖2

I Hoffman–Wielandt inequality:
I maxk |σk(Q + E )− σk(Q)| ≤ ‖E‖2



Randomized Matrix Decompositions: Frobenius Norm
Error

I Given a large matrix A ∈ Rn×d

I idea: sample some columns of A to get C ∈ Rn×m

I approximation CC †A ≈ A

I calculate top left singular values of C = UkΣkV
T
k

Lemma 2 (Drineas et al. 2006)

‖A− UkU
T
k A‖2F ≤ ‖A− UAU

T
A A‖2F + 2

√
k‖AAT − CCT‖F

I approximate matrix multiplication results can be used



Randomized Singular Value Decomposition

I Given a large matrix A ∈ Rn×d

I idea: sample some columns of A to get C ∈ Rn×m

I C = AS

I approximation CC † = (AS)(AS)†A ≈ A

I calculate QR decomposition of AS = QR

I then QQTA ≈ A, i.e., Q approximate the range space of A

I calculate the SVD QTA = UΣV T

I approximate SVD of A is A ≈ (QU)ΣV T
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I Given a large matrix A ∈ Rn×d

I idea: sample/sketch some columns of A to get C ∈ Rn×m

I C = AS

I approximation CC † = (SA)(SA)†A ≈ A

I calculate QR decomposition of SA = QR

I then QQTA ≈ A, i.e., Q approximate the range space of A

I calculate the SVD QTA = UΣV T
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Randomized Singular Value Decomposition: Analysis

I Given a large matrix A ∈ Rn×d

I Generate a Gaussian sketching matrix S ∈ d ×m

I C = AS

I approximation CC † = (AS)(AS)†A ≈ A

I calculate QR decomposition of C = AS = QR

I then QQTA ≈ A, i.e., Q approximate the range space of A

I calculate the SVD QTA = UΣV T

I approximate SVD of A is A ≈ (QU)ΣV T

I Lemma (Halko et al. 2009)

E‖A− QQTA‖2 ≤
(

1 +
4
√
m

m − k − 1

√
min(n, d)

)
σk+1



Randomized Singular Value Decomposition: Comparison

I Generate a Gaussian sketching matrix S ∈ d ×m

I calculate QR decomposition of C = AS = QR

I calculate the SVD QTA = UΣV T

I approximate SVD of A is A ≈ (QU)ΣV T

I Lemma (Halko et al. 2009)

E‖A− QQTA‖2 ≤
(

1 +
4
√
m

m − k − 1

√
min(n, d)

)
σk+1

I Exact SVD of A = UAΣAV
T
A yields

‖A− Uk
A(Uk

A)TA‖2 ≤ σk+1



Low-rank matrix approximations

I Singular Value Decomposition (SVD)

I A = UΣV T

I takes O(nd2) time for A ∈ Rn×d

I best rank-k approximation is Ak := UkΣkV
T
k =

∑k
i=1 σiuiv

T
i

I ‖A− Ak‖2 ≤ σk+1



Randomized low-rank matrix approximations

I Randomized (SVD)

I approximation C (e.g. a subset of the columns of A)

I AAT ≈ CCT

I Ãk = CC †A is a randomized rank-k approximation

I ‖A− Ãk‖22 ≤ σ2k+1 + ε‖A‖22



Randomized low-rank approximation example
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