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Randomized Linear Algebra and Optimization
Lecture 18: Generalized Least Squares Problems,
Randomized Low Rank Approximations and Power

lteration



Recap: Low-rank matrix approximations

» Singular Value Decomposition (SVD)

A=UxVT
takes O(nd?) time for A ¢ R"™*¢
> best rank-k approximation Ay := U X, V] = S5 ojuiv]

1A = Axll2 < o441



Recap: Randomized low-rank matrix approximations

idea: sample some rows/sketch A € R"*9 to get C € R"™*"™

C = AS where S € RY*™ is a sampling/sketching matrix
> we have an approximate matrix multiplication AAT ~ CCT.

Next, consider the best approximation of A

in the range of C = AS

min |CX — Allg

also called CX decomposition

> A, = CX* = CC'Ais a randomized rank-m approximation

(AS)(AS)TA~ A



Recap: Randomized Singular Value Decomposition

> CX decomposition provides the approximation
(AS)(AS) A~ A

» calculate QR decomposition of AS = QR
QRTA~A, ie., Q approximates the range space of A
» calculate the SVD QTA= U VT

> approximate SVD of Ais A~ (QU)ZVT
U/

note that U’ := QU and V are orthogonal and ¥ is diagonal
we have an approximation of the left and right singular
vectors and singular values of A



Analysis of Randomized Low Rank Approximations

» CX decomposition: form sketch AS, and find the best
approximation of A in the range of AS

X* = argmin | ASX — Al = (AS)TA

> approximation ASX* = (AS)(AS)TA~ A

yields randomized SVD : AS = QR and QTA=UZVT
> Let A= USVT and Ay = S5 oy e,

best rank-k approximation of A

note that

|AS (AS) A—A|2 < [ AS(AS) A — All2
X*
— [AL(STAL)ISTAT — AT|2



Analysis of Randomized Low Rank Approximations

» approximation error

|AS (AS)!A~AlIZ < | AS(ALS) Ax — All2
X*
= |AL(STA{)ISTAT — AT|IZ
= |ACX - ATz

where

X :=arg m)}n ISTAIX —STAT|2



Analysis of Randomized Low Rank Approximations

» approximation error

|AS (AS)!A~AlIZ < | AS(ALS) Ax — All2
X*
= |AL(STA{)ISTAT — AT|IZ
= |ACX - ATz

where

X :=arg m)}n ISTAIX —STAT|2

> identical to left sketching the Generalized Least Squares
problem

min | ATX — AT |2



Generalized Least Squares Problems
in |AX — B||?
min | IF

» Least Squares problem with multiple right-hand-sides
B = [blv () br]
X = [x1, .0y Xr]

r

min Z | Ax; — bjl3
X1yee0yXr i1

» optimal solution
X =[x{,...,x}]
= [AThy, ..., ATb,]
= A'B



Left Sketching Generalized Least Squares Problems
» original problem
X* = arg m)gn |AX — B|%

» form sketches of the data SA and SB, e.g.,

uniform row sampling, weighted sampling, Gaussian, +1 i.i.d,
CountSketch, FJLT...

X = arg m)gn |SAX — SB||%

X; = arg min |ISAx; — Sb,-H%
= (SA)(Shy)

» left-sketch applied to simple Least Squares problem
miny, ||Ax; — bi||3



Recall Gaussian Sketch Analysis
> Let Ac R™9, S c R™" beiid. Gaussian
x*:=arg min |Ax — b||3 and X =arg min ||SAx — Sb||3
XERd N—— XERd
f(x)

» Conditioned on the matrix SA

A% — x*) ~ /\/(0, f(:)A(ATSTSA)lA)



Recall Gaussian Sketch Analysis
> Let Ac R™9, S c R™" beiid. Gaussian
x*:=arg min |Ax — b||3 and X =arg min ||SAx — Sb||3
XERd N—— XERd
f(x)

» Conditioned on the matrix SA

A% — x*) ~ /\/(0, f(:)A(ATSTSA)lA)

> taking expectation over SA, and using
E[(ATSTSA)™ ] = (ATA)™1 2 we get

Y f(x* _
E|AX — x*)||5 = m_(d)_ltrA(ATA) 1A
rank(A) . d
Flx )m —d-1

= flx )m—d—lz



Left Sketching Generalized Least Squares Problems
» original problem and left-sketch

X* = arg m)gn |AX —B||2 and X :=arg m)gn |SAX — SB||%

» x;: i-th column of X satisfies

% = arg min || SAx; — Sb;||3
Xi

» For a Gaussian sketching matrix S we have
E[IA(% — )13 = [ Ax = bill3———
! i /12 i ! 2m g

implies
* * 2 d
EJ|A(X — X*) ZHAX,' - bi||2m_7_
=1

= |AX* — B||f————
| )



Left Sketching Optimality Gap

» suppose that rank(A) = r

original problem and left-sketch

X* = arg m)in |AX —B||2 and X :=arg m)}n |SAX — SB||%

EIIAKX — X*)|2 = |IAX* — B||2 —
IAGK - x| = | 3 ———

E|AX - B} = E|AX" — B+ AX - X*)|}2
= | AX" — BJZ + EJJA(X - X*)|2

r
= |AX* = B|2(1+ ——
| !#(+m_r_p

m—1
= |[AX* = BJ|Z2 — —
[ 12—



Back to Randomized Low Rank Approximations

» approximation error

E||AS (AS)TA—A|2 < E[|AS(AS) Ax — All2
X*
— |AL(STAL)ISTAT — AT|2

=E||A{ X — AT|?
m-—1

< mHAkT(AkT)TAT - AT|%
m-—1

< T JA(AAL — D)

< T AAAL - DI
m-—1

<7 _ 2
< A Al



Randomized Low Rank Approximation and Randomized
SVD Error Bound

» CX decomposition and randomized SVD
AS(AS)TA~ A
» final Frobenious norm error bound

m-—1
B AS(AS) A~ AlR <~ ]| A - A2

—k
valid for any k € {1, ...,rank(A)}



Randomized Low Rank Approximation and Randomized
SVD Error Bound

» CX decomposition and randomized SVD
AS(AS)TA~ A
» final Frobenious norm error bound

m-—1
B AS(AS) A~ AlR <~ ]| A - A2

—k
valid for any k € {1, ...,rank(A)}

» define the oversampling factor £ :=m — k —1

k
[AS(AS)TA = AllE < (1+ 7)lIA — Al



Reducing the Error: Power lteration

» error bounds depend on tail singular values

rank(A)

1A= AlE= > of
j=k+1

> idea: compute the sketch of (AAT)9A
C = (AAT)IAS
where g is an integer parameter
CCTA= A

CCT approximates the range of A better for g > 1
» singular values of (AAT)9A are o;(A)?3+1

where o;(A) are the singular values of A



Connection to the Classical Power lteration

» suppose that AT A has a unique maximal eigenvector

» Starting from a nonzero vector xp, the iterations

. ATAXt
LT AT A2

converges to a multiple of the maximal eigenvector



Simultaneous (QR) Iteration

» suppose that the top-m eigenvalues of AT A are distinct

» Starting from a matrix Xg of rank m, e.g., a random d x m
matrix, the iterations

Qth = Xt
Xey1 = ATAQ,

where Q;R; is the QR factorization of X;,

converges to an orthonormal basis for the top-m eigenspace of
AT A

» note that the first iteration computes the QR decomposition
ATAS = QR where S is random. This is similar to the
CR-decomposition and randomized SVD approach, where the
QR decomposition of AS serves as a crude approximation of
the top eigenspace basis



