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Randomized Linear Algebra and Optimization
Lecture 19: Kernel Matrices, Effective Dimension,
Nystrom Method and Random Fourier Features



Approximating Large Square Matrices

» Large and square matrices A € R"*"
» Regularized Least Squares

¢ (Tikhonov) regularization
min | Ax — b]|3 + Allx[13

» alternative form
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Sketching Regularized Problems

min
X
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> Left sketch min, ||SAx — Sb||3 approximates the solution
when sketch dimension m > d + 1, e.g., for Gaussian S

» Sketch dimension can be smaller if we use a partial sketch

min || SAx — Sb|3 + Allx[13

» the term v\ is not sketched /subsampled



Sketching Regularized Problems

x* = argmin | Ax — b3 + X||x|3

f(x)

£ = argmin ||SAx — Sb||3 + \||x||3
X

> approximation ratio f(X) < f(x*)(1 +¢)
when m > constant x de(\)
for i.i.d. Gaussian, sub-Gaussian and FJLT sketch
(ignoring log factors)

> d.(\) =27, Uf&g)é)i)\ is the effective dimension of A

» d.(0) = rank(A)




Hessian Sketching for Regularized Problems

min f(Ax) + )\”XH%

» sketched Newton iterations

1 A
xee1 = argmin 2| S(V2F(x) 2x + (x = xe) V() + I3

> (V2f(x))/*STS(V2F(x))"/* + Al is invertible for all m
when A >0

» similar guarantees involving the effective dimension of the
Hessian matrix

> )\ =0 requires m > d for invertibility



Kernel Matrices

» Large square matrices K € R™"
» Kernel Ridge Regression

min ||Ka — y|j3 + Xa” Ka
«

> K is called the kernel matrix

» K = k(xj,xj) where xq,...,xp € R? are data vectors
k is the kernel function

> prediction at a point x is Y i, k(Xj, x)vj, i.e, predictions on
the training set are Ka ~ y

> examples:

; — S lxi—xil13

Gaussian kernel Kjj = k(x;, xj) = e o2 il

Polynomial kernel Kjj = k(xi, x;) = (x;" x;)"

» Kernel matrices typically have low effective dimension, e.g.,
» Gaussian kernel has de(\) = O(y/log n) for A = "’%. This
choice of A\ provides optimal statistical guarantees



Kernel Trick

> Kernel Ridge Regression
min ||[Ka — y|j3 + Aa” Ka
«

example: polynomial kernel (degree 2)
Kij = r(xi, %) = (x7 %)

> maps data to higher dimension

X111 -.. X1d
A=
Xpnlt ... Xpd
X111 -.-. X1d X121

2
an . e Xnd Xll



Application: Kernel Regression
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Application: Kernel Classification

n
min ZK(Ka,y) + X’ Ka
i=1

linear kernel Kjj = x;' x;

llx =113
gaussian kernel Kj; = e 252

DA



Nystrom Method

>

>

We need a symmetric approximation. CX decomposition is
not symmetric.

Most kernel matrices are positive semidefinite, i.e.,

K = AT A for some matrix A

Recall the CX decomposition A = (AS)(AS)TA ~ A we used
in randomized SVD

Consider approximating AT A via AT A
((AS)(AS)TA) T(AS)(AS)TA = AT(AS)(AS)T(AS)(AS) A
= AT(AS)(AS)TA
= ATAS(STATAS)™ISTATA
randomized low rank approximation of K is given by
K=KS(STKS)1STK ~ K

Nystrom Method: S is uniform column sampling
weighted sampling or sketching can also be used



Generalized Nystrom Method

» Nystrom method can be generalized to non symmetric
matrices

» Consider CX decomposition where C = AS and S is a
sketching matrix

in||[ASX — A
min | Ir

» Apply another sketching matrix R on the left

m)gn ||IRASX — RA||F

> solution X* = (RAS)TRA
» approximation of A is
AS(RAS)TRA ~ A
» reduces to the Nystrom method when R =S and A= AT

» faster than CX and randomized SVD, less accurate



Random Fourier Features

» Random approximations of kernel matrices

» Generate w ~ N(0, /)

> Define features h(x) := e /¥ * where j = \/—1
it holds that

Ewh(x)h(y)* = E,e ¥ xetivy
— Ewe*jWT(X*Y)
N / p(w)e ) dw
— 30T (x=y)

» where p(w) is the multivariate Gaussian distribution

» Bochner’s Theorem: Fourier transforms of probability
distributions correspond to positive semidefinite kernels

» Gaussian distribution corresponds to the Gaussian kernel



Random Fourier Features

» Random approximations of kernel matrices
» Generate wy, ..., Wy, ~ N(0, /) i.i.d.
» Define feature vectors

e—jwlTx
1 e*jW2TX
h(x) = —
Jm |l
e—jw,;’,—x

» then we have
(h(x), h(y)) = — Y )~ B, ) = o3 T)
m
i=1

» Kernel matrix can be approximated via a rank m matrix, i.e.,
Kij = o Sy € 0070 = (h(x), h(x))
Rahimi and Recht, Random Features for Large-Scale Kernel
Machines, 2007



Random Fourier Features

» The embedding is a nonlinear sketch:

Let A= [x1,x2,...,x,]7, define A := ﬁ exp(—iAS)

where exp(-) is the entrywise scalar exponential function.
We have ATA ~ K since EATA = K
P can also be obtained using real valued embeddings
> Generate w ~ N(0,/) i.i.d.
> h(x) = v2cos(w' x + b) where b ~ Uniform(0, 27) also works
> the approximation error ||[ATA —EAT A2 can be controlled
via matrix concentration bounds since AT A is a sum of m
i.i.d. matrices.
» equivalently, we may use random nonlinear features h(x) in
linear models, e.g., least squares, logistic regression, SVM etc.

» usually faster than Nystrom but less accurate



