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Randomized Linear Algebra and Optimization
Lecture 19: Kernel Matrices, Effective Dimension,

Nystrom Method and Random Fourier Features



Approximating Large Square Matrices

I Large and square matrices A ∈ Rn×n

I Regularized Least Squares

`2 (Tikhonov) regularization

min
x
‖Ax − b‖22 + λ‖x‖22

I alternative form
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Sketching Regularized Problems

min
x
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I Left sketch minx ‖SÃx − Sb̃‖22 approximates the solution
when sketch dimension m > d + 1, e.g., for Gaussian S

I Sketch dimension can be smaller if we use a partial sketch

min
x
‖SAx − Sb‖22 + λ‖x‖22

I the term
√
λI is not sketched/subsampled



Sketching Regularized Problems

x∗ = arg min
x
‖Ax − b‖22 + λ‖x‖22︸ ︷︷ ︸

f (x)

x̂ = arg min
x
‖SAx − Sb‖22 + λ‖x‖22

I approximation ratio f (x̂) ≤ f (x∗)(1 + ε)

when m ≥ constant× de(λ)

for i.i.d. Gaussian, sub-Gaussian and FJLT sketch

(ignoring log factors)

I de(λ) =
∑d

i=1
σi (A)

2

σi (A)2+λ
is the effective dimension of A

I de(0) = rank(A)



Hessian Sketching for Regularized Problems

min
x

f (Ax) + λ‖x‖22

I sketched Newton iterations

xt+1 = arg min
x

1

2
‖S
(
∇2f (xt)

)1/2
x‖22 + (x − xt)

T∇f (xt) +
λ

2
‖x‖22

I
(
∇2f (xt)

)1/2
STS

(
∇2f (xt)

)1/2
+ λI is invertible for all m

when λ > 0

I similar guarantees involving the effective dimension of the
Hessian matrix

I λ = 0 requires m > d for invertibility



Kernel Matrices

I Large square matrices K ∈ Rn×n

I Kernel Ridge Regression

min
α
||Kα− y ||22 + λαTKα

I K is called the kernel matrix

I K = κ(xi , xj) where x1, ..., xn ∈ Rd are data vectors

κ is the kernel function

I prediction at a point x is
∑n

i=1 κ(xi , x)αi , i.e, predictions on
the training set are Kα ≈ y

I examples:

Gaussian kernel Kij = κ(xi , xj) = e−
1
σ2 ‖xi−xj‖22

Polynomial kernel Kij = κ(xi , xj) = (xTi xj)
r

I Kernel matrices typically have low effective dimension, e.g.,

I Gaussian kernel has de(λ) = O(
√

log n) for λ =
√

log n
n . This

choice of λ provides optimal statistical guarantees



Kernel Trick

I Kernel Ridge Regression

min
α
||Kα− y ||22 + λαTKα

example: polynomial kernel (degree 2)
Kij = κ(xi , xj) = (xTi xj)

2

I maps data to higher dimension

A =

 x11 . . . x1d
...

xn1 . . . xnd

 →

Ã :=

 x11 . . . x1d x211 . . . x21d
...

xn1 . . . x2nd x211 . . . xnd





Application: Kernel Regression

Gaussian Kernel Kij = e−
‖xi−xj‖

2
2

2σ2



Application: Kernel Classification

min
α

n∑
i=1

`(Kα, y) + λαTKα

linear kernel Kij = xTi xj gaussian kernel Kij = e−
‖xi−xj‖

2
2

2σ2



Nystrom Method
I We need a symmetric approximation. CX decomposition is

not symmetric.
I Most kernel matrices are positive semidefinite, i.e.,

K = ATA for some matrix A
I Recall the CX decomposition Ã = (AS)(AS)†A ≈ A we used

in randomized SVD
I Consider approximating ATA via ÃT Ã(

(AS)(AS)†A
)T

(AS)(AS)†A = AT (AS)(AS)†(AS)(AS)†A

= AT (AS)(AS)†A

= ATAS(STATAS)−1STATA

I randomized low rank approximation of K is given by

K̃ = KS(STKS)−1STK ≈ K

I Nystrom Method: S is uniform column sampling
I weighted sampling or sketching can also be used



Generalized Nystrom Method

I Nystrom method can be generalized to non symmetric
matrices

I Consider CX decomposition where C = AS and S is a
sketching matrix

min
X
‖ASX − A‖F

I Apply another sketching matrix R on the left

min
X
‖RASX − RA‖F

I solution X ∗ = (RAS)†RA

I approximation of A is

AS(RAS)†RA ≈ A

I reduces to the Nystrom method when R = S and A = AT

I faster than CX and randomized SVD, less accurate



Random Fourier Features

I Random approximations of kernel matrices

I Generate w ∼ N(0, I )

I Define features h(x) := e−jw
T x where j =

√
−1

it holds that

Ewh(x)h(y)∗ = Ewe
−jwT xe+jwT y

= Ewe
−jwT (x−y)

=

∫
p(w)e−jw

T (x−y)dw

= e−
1
2
(x−y)T (x−y)

I where p(w) is the multivariate Gaussian distribution

I Bochner’s Theorem: Fourier transforms of probability
distributions correspond to positive semidefinite kernels

I Gaussian distribution corresponds to the Gaussian kernel



Random Fourier Features

I Random approximations of kernel matrices

I Generate w1, ...,wm ∼ N(0, I ) i.i.d.

I Define feature vectors

h(x) =
1√
m


e−jw

T
1 x

e−jw
T
2 x

. . .

e−jw
T
m x


I then we have

〈h(x), h(y)〉 =
1

m

m∑
i=1

e jw
T
i (x−y) ≈ Ewe

jwT (x−y) = e−
1
2
(x−y)T (x−y)

I Kernel matrix can be approximated via a rank m matrix, i.e.,
Kij ≈ 1

m

∑m
i=1 e

jwT
i (xi−yi ) = 〈h(xi ), h(xj)〉

Rahimi and Recht, Random Features for Large-Scale Kernel
Machines, 2007



Random Fourier Features

I The embedding is a nonlinear sketch:

Let A = [x1, x2, . . . , xn]T , define Ã := 1√
m

exp(−iAS)

where exp(·) is the entrywise scalar exponential function.

We have ÃT Ã ≈ K since EÃT Ã = K
I can also be obtained using real valued embeddings

I Generate w ∼ N(0, I ) i.i.d.
I h(x) =

√
2 cos(wT x + b) where b ∼ Uniform(0, 2π) also works

I the approximation error ‖ÃT Ã− EÃT Ã‖2 can be controlled
via matrix concentration bounds since ÃT Ã is a sum of m
i.i.d. matrices.

I equivalently, we may use random nonlinear features h(x) in
linear models, e.g., least squares, logistic regression, SVM etc.

I usually faster than Nystrom but less accurate


