EE270
Large scale matrix computation,
optimization and learning

Instructor : Mert Pilanci

Stanford University

Thursday, Jan 9 2020

Lecture 2
Randomized Linear Algebra
Approximate Matrix Multiplication

Randomized Algorithms

» algorithms that employ a degree of randomness to guide its
behavior

P> we hope to achieve good performance in the average case

P the algorithm’s performance is a random variable

Randomized Algorithms

Are approximations satisfactory?
» depends on the application

> often acceptable for minimizing training error up to statistical
precision

» implicit regularization effect

» when not satisfactory, they can be used as initializers for exact
and costly methods

> moreover, exact methods might not work at all for very large
scale problems

Probability background and notation

> X : discrete random variable taking values xi, ..., X,
Expectation E[X]

v

E[X] = ZX;P[X = x;]

» Properties:
linearity
E[cX] = cE[X] where c is a constant

E[X + Y] = E[X] + E[Y] where X and Y are two random
variables

vy

Probability background and notation

» Variance

Var[X] = E[(X — E[X])]]

> Var[X] = E[X?] - 2E[XEX] + E[E[X]?]
= E[X?] — E[X]?

Probability background and notation

Var[X] = E[(X — E[X])Y]
= E[X?] — E[X]?

» Variance properties

» Var[cX] = c®Var[X] where c is a constant

Probability background and notation

Var[X] = E[(X — E[X])?]
= E[X?] — E[X]?

» Variance properties
» Var[cX] = c*Var[X] where c is a constant
> Var[X + Y] =E(X + Y)? — (E[X] + E[Y])? =
E[X?] — E[X]? + E[Y?] — E[Y]? + 2(E[XY] — E[X]E[Y])
» Var[X + Y] = Var[X] + Var[Y] for X, Y uncorrelated
(E[XY] = E[X]E[Y])

P independence implies uncorrelatedness

Probability background and notation

» Averaging independent realizations reduce variance
Let X1 and X, be independent and identically distributed
> Var[#] = tVar[X; + X;]
= 1 (Var[X{] + Var[Xz]) = JVar[X{]

Example: randomized counting

» Deterministic counting
Set counter =0
Increment counter < counter + 1 for every item

» space complexity is log,(n) bits for n items

Example: randomized counting

» Deterministic counting

Set counter =0

Increment counter < counter + 1 for every item
» space complexity is log,(n) bits for n items
> Approximate randomized counting

keep only the exponent to reduce space.

» For example, in base 2, the counter can estimate the count to
be 1, 2, 4, 8, 16, 32, and all of the powers of two.

Example: randomized counting

» Deterministic counting

Set counter =0

Increment counter < counter + 1 for every item
» space complexity is log,(n) bits for n items
> Approximate randomized counting

keep only the exponent to reduce space.

» For example, in base 2, the counter can estimate the count to
be 1, 2, 4, 8, 16, 32, and all of the powers of two.

» flip a coin the number of times of the counter’s current value.
If it comes up Heads each time, then increment the counter.
Otherwise, do not increment it.

» space complexity is log, log,(n) bits for n items

Example: randomized counting

> Approximate randomized counting
Set X =0
Increment X < X + 1 with probability 2= for every item.
Output i =2X -1

» space complexity is log, log,(n) bits for n items

Example: randomized counting

> Approximate randomized counting
Set X =0
Increment X < X + 1 with probability 2= for every item.
Output i =2X -1
» space complexity is log, log,(n) bits for n items
Lemma 1 Efi = E2X — 1 = n (Unbiased)
Var[fi] < n?
» Variance can be reduced by averaging multiple trials
> fiy, ..., A, iid. trials, Var(2 Y7 ny) = IVar(f;)
Morris's Algorithm (1977)

A randomized counting application

From Estan-Varghese-Fisk: traces of attacks
Need number of active connections in time slices.

Canpus 1/0 by IP Protocel, Flows, +outbound/-inbound
40k

20K

2.0k

1.0k
- ———

1.0k

2.0k

2.0k

flows per second

a0k

5.0k

&0k

7.0k

8.0 k

18:00 00: 00 05:00 12100

W oice out [wcasT out Euoe out W ICw out I TOTAL out
W TCP in M WCAST in W UOP in M ICKP in W TOTAL in

Incoming/Outgoing flows at 40Gbits/second.
Code Red Worm: 0.5GBytes of compressed data per hour (2001).
CISCO: in 11 minutes, a worm infected 500,000,000 machines.

slide credit: Flajolet

Classical Matrix Multiplication Algorithm
Let A€ R™9 and B € R9*P
d

(AB)j =Y AwByj
k=1

Classical Matrix Multiplication Algorithm

Let Ac R"™9 and B € RI*P
d

(AB)j =Y AwByj
k=1

Algorithm 2 Vanilla three-look matrix multiplication algorithm

Input: An n X d matrix A and an d X p matrix B
Output: The product AB

1: for i=1to ndo

2. forj=1to pdo

3 (AB)U =0

4 for k=1 to d do
5: (AB)U+ = AikBkj
6 end for

7 end for

8: end for

Classical Matrix Multiplication Algorithm

Let Ac R"™9 and B € RI*P
d

(AB)j =Y AwByj
k=1

Algorithm 3 Vanilla three-look matrix multiplication algorithm

Input: An n X d matrix A and an d X p matrix B
Output: The product AB

1. fori=1to ndo

2. forj=1to pdo

3 (AB)U =0

4 for k=1 to d do
5: (AB)U+ = AikBkj
6 end for

7 end for

8: end for

» Complexity: O(ndp)

Faster Matrix Multiplication

Square matrix multiplication n=d = p
» Classical O(n%)
> Strassen (1969) O(n?%074)
» Coppersmith-Winograd (1990) O(n?>37°)
» Vassilevska Williams (2013) O(n?3728642)
> Le Gall (2014) O(n?-3728639)

Faster

vVvvyYVYyyvyy

Matrix Multiplication

Square matrix multiplication n=d = p
Classical O(n®)

Strassen (1969) O(n?8074)
Coppersmith-Winograd (1990) O(n?37)
Vassilevska Williams (2013) O(n?-3728642)
Le Gall (2014) O(n?3728639)

The greatest lower bound for the exponent of matrix
multiplication algorithm is generally called w.

2 < w because one has to read all the n? entries and hence
2<w <2373

it is unknown whether 2 < w

Faster

vVvvyYVYyyvyy

Matrix Multiplication

Square matrix multiplication n=d = p
Classical O(n®)

Strassen (1969) O(n?8074)
Coppersmith-Winograd (1990) O(n?37)
Vassilevska Williams (2013) O(n?-3728642)
Le Gall (2014) O(n?3728639)

The greatest lower bound for the exponent of matrix
multiplication algorithm is generally called w.

2 < w because one has to read all the n? entries and hence
2<w <2373

it is unknown whether 2 < w
some are galactic algorithms (Lipton and Regan)

only of theoretical interest and impractical due to large
constants

Strassen showed! how to use 7 scalar multiplies for 2 x 2 matrix multiplication

Ci Go | _| An
G Cx» A

classical algorithm

My = A11Bn
My = A12Bn
M3 = A11Bi2
My = A12B2
Ms = A1 B11
Ms = A2 B
M7 = A1 Bio
Mg = A2 B
G =M + M
Cio = Mz + My
Co1 = Ms + Mg
Coo = M7+ Mg

1 . P .
V. Strassen, Gaussian Elimination is not Optimal, 1969

A2 Bi1 B2
A2

By B

Strassen’s algorithm
My = (A11 + Ax)(B11 + B22)
My = (A21 + Ax)Bi1
Ms = A11(Bi2 — B22)
My = A2 (B21 — Bi1)
Ms = (A11 + A12) B2
Ms = (A21 — A11)(Bi11 + Bi2)
M7 = (A2 — A2)(B21 + B2)

Ci1 = My + My — Ms + My
Cio = M3 + Ms
Cor = My + My
Coo = My — M + Mz + Mg

Classical Matrix Multiplication vs Strassen’'s Method and
others

» The constants in fast matrix multiplication methods are high
and for a typical application the classical method works better.

» The submatrices in recursion take extra space.

» Because of the limited precision of computer arithmetic on
noninteger values, larger errors accumulate

Notation

» For a matrix A € R"*9
» AU) € R"*1 denotes the j-th column of A as a column vector

> An € R*9 denotes i-th row of A is a row vector

Notation

For a matrix A € R"*4
AU) € R"™*1 denotes the j-th column of A as a column vector

Ay € R*9 denotes i-th row of A is a row vector
A= AL o AlD)]

Notation

» for a vector x € R”

> |Ix|l2 = />, [xi|? denotes its Euclidean length (¢2-norm)

Notation

for a vector x € R”

Ixll2 = /> i1 |xi|?> denotes its Euclidean length (¢2-norm)

>
>
> for a matrix A € R"<4
>
>

JAllF = />>71 554 |Ag|? is the Frobenius norm
[AllF = [[vec(A)]]2)

where vec reshapes A into an nd x 1 vector

Approximate Matrix Multiplication by random sampling

» matrix multiplication formula

d
(AB)j =Y AuBij = A;BY)
k=1

> A(k)B(k) are inner products

Approximate Matrix Multiplication by random sampling

» matrix multiplication formula

d
(AB)j =Y AuBij = A;BY)
k=1
> A(k)B(k) are inner products

» same formula as a sum of outer products

d

AB =Y ARB,
k=1

> AXB, are rank-1 matrices

Approximate Matrix Multiplication by random sampling

» matrix multiplication as sum of outer products

d

AB =Y AMB,
k=1

» basic idea: sample m indices i1, ...,im € {1,...,d}

AB %? ZA(it)B(,'t)

t=1

Required probability background

> Probability, events, random variables
» Expectation, variance, standard deviation

» Conditional probability, independence

A probability refresher will be posted on the course webpage

Approximate Matrix Multiplication by weighted sampling

» matrix multiplication as sum of outer products

d
AB => " AKB,

k=1
» weighted sampling: sample m indices i1, ..., im € {1, ..., d}
independently with replacement such that
» Pliy = k] = pi for all ¢
p1,---, Pd is a discrete probability distribution

1~ 1
AB~ =Y —AldB.

Approximate Matrix Multiplication by weighted sampling

> weighted sampling: sample m indices i1, ..., im € {1, ..., d}
independently with replacement such that
» P[iy = k] = py for all t

AB~ =Y —AldB.
m ; p’t (t)

> E [% >t pi,-tA(it)B(it)] =

Approximate Matrix Multiplication by weighted sampling

P vyields a smaller matrix multiplication problem

1 1

AB ~ — AUB .\ 2 CR
> C=| A=Al L__ A(im)

A/

Approximate Matrix Multiplication

Algorithm 4 Approximate Matrix Multiplication via Sampling
Input: An n x d matrix A and an d x p matrix B, an integer m
and probabilities {px}¢_;

Output: Matrices CR such that CR R~ AB
1: fort =1to mdo
2: Pick iy € {1,...,d} with probability P[i = k] = px in i.i.d.
with replacement
_ 1 it _ 1
3 Set C() = \/?PQA() and Ry = \/mTJitB("f)

4: end for

Approximate Matrix Multiplication

Algorithm 5 Approximate Matrix Multiplication via Sampling
Input: An n x d matrix A and an d x p matrix B, an integer m
and probabilities {px}¢_;

Output: Matrices CR such that CR R~ AB
1: fort =1to mdo
2: Pick iy € {1,...,d} with probability P[i = k] = px in i.i.d.
with replacement
_ 1 it _ 1
3 Set C() = \/?PQA() and Ry = \/mTJitB("f)
4. end for

> We can multiply CR using the classical algorithm
» Complexity O(nmp)

Sampling probabilities

» Uniform sampling px = % forall k=1,....m

R
AB ~ ;ZFA()B(iy
t=1

(i) Vd A(im)
Y ICURE]

m

v
(@)
I
i

<A)

P, 5%

Alim)

[>

CR

AMM mean and variance

AB~CR=-3 —Aldp.
m Z_: Pi. (i)

» Mean and variance of the matrix multiplication estimator
Lemma 2
> E[(CR)j] = (AB);
A2 B2

> Var[(CR);] = L3¢, "% _ 1(AB)y2

Pk

AMM mean and variance

AB~CR=—Y —Alp,
m Z plt (It)

» Mean and variance of the matrix multiplication estimator
Lemma 2
> E[(CR)j] = (AB);
A2 B2
> Var[(CR)j] = £ 34, o — L(AB):
> E|AB — CR||? _Z E(AB — CR) ZUVar[(CR),-j]

> BE
= % Zk:l M - %HABH%

Pk

= L3 LIARB) B3 - LIABI2

Uniform sampling guarantees

> pk:%forkzl,...,d
d < G
AB~ CR=—% AWB;,
t=1

» We can choose sampling set before looking at data (oblivious)

> AMM algorithm can be performed in one pass over data

d
d 1
E|AB — CR|E = — > [AWI3]Bl3 — —ABIIZ
m k=1 m

Optimal sampling probabilities

» Optimal sampling probabilities to minimize E||AB — CR||r

i.e., sum of variances

mmZOEHAB — CR||F

P1,:--Pd
> pe=1
141 1
= min — Y AR 21B/nI|2 = =||AB]2
phmpdzomzpk\l 1211Byll2 mH i3

> pk=1 k=1

Optimal sampling probabilities

Let g1, ..., 94 € R given

d o
min 9k

P1;---Pd>0 Pk
> p=1 k=1

» introduce a Lagrange multiplier for the constraint > py =1

Optimal sampling probabilities

» Nonuniform sampling
= 1A% 2/BM]2
i AW 2]|BW||2
» minimizes E||AB — CR||r
> E||AB - CRIIE = & 351 o AW311Bw I3 — %1 ABIIE

2
d
= <Zk:1 HA(k)HZHB(k)H2> — 1AB|2
is the optimal error

Special case: computing AT A

» Nonuniform sampling

Al
il Aw 2
> minimizes E||ATA — CR||F
note that C = RT

Probability Bounds

» So far we have results on the expectation of the error
» Markov's Inequality

» If Z is a non-negative random variable and t > 0, then

EZ

Probability Bounds for AMM

» Upper-bounding the error

d 2
1 1
EJIAB — CRI} = — <§ HA(k)”2HB(k)”2> ~ —|ABII}
k=1

IN

1 (& :
. (Z HA(k)HZHB(k)HZ)
k=1

1 d d
el INDIN LI END SN 1= Y
k=1 k=1

1
= —|AlEIBIIE -

2

IN

Applying Markov's inequality

E||AB—CR||2
> P[IAB - CRIZ > | AIRIBIE] < HiEaE < 2L,

Final Probability Bound

> Forany 6 >0, set m= ﬁ to obtain

P[|AB — CR|r > €||AllF|IBllF] <6 (1)

> ie., [|[AB — CR||F < €||A||r||B||F with probability 1 — .

Numerical simulations for AMM

> Approximating AT A
rows of A are i.i.d. Gaussian

4500 10
4000 °
3500 = ?
ES
57
a0 H
HE
200
2
£ s
2000 - 2
Es
g
1500 &
-
L g
1000 £,
s00- '
o . o
FR— D R

Q- number of row samples

u}
o)
I
i
it

Numerical simulations for AMM

> Approximating AT A
rows of A are i.i.d. Student’s t-distribution (3 degrees of
freedom)

Numerical simulations for AMM

» Approximating AT A
a subset of the CIFAR dataset

uniform
L2 norms | |

o

4
F
o

IS
I

S
T

o
®

=g
@

Error in spectral norm normalized by ||A||

o
=

o
o

U

10 20 30 40 50 60 70 80 90 100
q - number of row samples

o
o

Numerical simulations for AMM

> Approximating AT A

sparse matrix from a computational fluid dynamics model

70 T T T T T T T T T

4
F
@
3
T
L

IS o
S S
T

L L

Error in spectral norm normalized by ||A||
@
8
T
.

T ;
0 10 20 30 40 50 60 70 80 90 100
q - number of row samples

Questions?

