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Lecture 2
Randomized Linear Algebra

Approximate Matrix Multiplication



Randomized Algorithms

I algorithms that employ a degree of randomness to guide its
behavior

I we hope to achieve good performance in the average case

I the algorithm’s performance is a random variable



Randomized Algorithms

Are approximations satisfactory?

I depends on the application

I often acceptable for minimizing training error up to statistical
precision

I implicit regularization effect

I when not satisfactory, they can be used as initializers for exact
and costly methods

I moreover, exact methods might not work at all for very large
scale problems



Probability background and notation

I X : discrete random variable taking values x1, ..., xn
I Expectation E[X ]

E[X ] =
∑
i

xiP[X = xi ]

I Properties:

linearity

I E[cX ] = cE[X ] where c is a constant

I E[X + Y ] = E[X ] + E[Y ] where X and Y are two random
variables



Probability background and notation

I Variance

Var[X ] = E[(X − E[X ])2]

I Var[X ] = E[X 2]− 2E[XEX ] + E[E[X ]2]

= E[X 2]− E[X ]2



Probability background and notation

Var[X ] = E[(X − E[X ])2]

= E[X 2]− E[X ]2

I Variance properties

I Var[cX ] = c2Var[X ] where c is a constant



Probability background and notation

Var[X ] = E[(X − E[X ])2]

= E[X 2]− E[X ]2

I Variance properties

I Var[cX ] = c2Var[X ] where c is a constant

I Var[X + Y ] = E(X + Y )2 − (E[X ] + E[Y ])2 =
E[X 2]− E[X ]2 + E[Y 2]− E[Y ]2 + 2(E[XY ]− E[X ]E[Y ])

I Var[X + Y ] = Var[X ] + Var[Y ] for X ,Y uncorrelated
(E[XY ] = E[X ]E[Y ])

I independence implies uncorrelatedness



Probability background and notation

I Averaging independent realizations reduce variance

Let X1 and X2 be independent and identically distributed

I Var[X1+X2
2 ] = 1

4Var[X1 + X2]

= 1
4 (Var[X1] + Var[X2]) = 1

2Var[X1]



Example: randomized counting

I Deterministic counting

Set counter = 0

Increment counter← counter + 1 for every item

I space complexity is log2(n) bits for n items

I Approximate randomized counting

keep only the exponent to reduce space.

I For example, in base 2, the counter can estimate the count to
be 1, 2, 4, 8, 16, 32, and all of the powers of two.

I flip a coin the number of times of the counter’s current value.
If it comes up Heads each time, then increment the counter.
Otherwise, do not increment it.

I space complexity is log2 log2(n) bits for n items
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Example: randomized counting

I Approximate randomized counting

Set X = 0

Increment X ← X + 1 with probability 2−X for every item.

Output ñ = 2X − 1

I space complexity is log2 log2(n) bits for n items

Lemma 1 Eñ = E2X − 1 = n (Unbiased)

Var[ñ] ≤ 1
2n

2

I Variance can be reduced by averaging multiple trials

I ñ1, ..., ñr i.i.d. trials, Var(1r
∑r

i=1 ni ) = 1
rVar(ñ1)

Morris’s Algorithm (1977)
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Lemma 1 Eñ = E2X − 1 = n (Unbiased)

Var[ñ] ≤ 1
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A randomized counting application

slide credit: Flajolet



Classical Matrix Multiplication Algorithm
Let A ∈ Rn×d and B ∈ Rd×p

(AB)ij =
d∑

k=1

AikBkj

Algorithm 1 Vanilla three-look matrix multiplication algorithm

Input: An n × d matrix A and an d × p matrix B
Output: The product AB

1: for i = 1 to n do
2: for j = 1 to p do
3: (AB)ij = 0
4: for k = 1 to d do
5: (AB)ij+ = AikBkj

6: end for
7: end for
8: end for

I Complexity: O(ndp)
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Classical Matrix Multiplication Algorithm
Let A ∈ Rn×d and B ∈ Rd×p

(AB)ij =
d∑

k=1

AikBkj

Algorithm 3 Vanilla three-look matrix multiplication algorithm

Input: An n × d matrix A and an d × p matrix B
Output: The product AB

1: for i = 1 to n do
2: for j = 1 to p do
3: (AB)ij = 0
4: for k = 1 to d do
5: (AB)ij+ = AikBkj

6: end for
7: end for
8: end for

I Complexity: O(ndp)



Faster Matrix Multiplication

Square matrix multiplication n = d = p

I Classical O(n3)

I Strassen (1969) O(n2.8074)

I Coppersmith-Winograd (1990) O(n2.376)

I Vassilevska Williams (2013) O(n2.3728642)

I Le Gall (2014) O(n2.3728639)

The greatest lower bound for the exponent of matrix
multiplication algorithm is generally called ω.

I 2 ≤ ω because one has to read all the n2 entries and hence
2 ≤ ω < 2.373

I it is unknown whether 2 < ω

I some are galactic algorithms (Lipton and Regan)

only of theoretical interest and impractical due to large
constants
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Strassen showed1 how to use 7 scalar multiplies for 2× 2 matrix multiplication[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

classical algorithm Strassen’s algorithm

M1 = A11B11 M1 = (A11 + A22)(B11 + B22)

M2 = A12B21 M2 = (A21 + A22)B11

M3 = A11B12 M3 = A11(B12 − B22)

M4 = A12B22 M4 = A22(B21 − B11)

M5 = A21B11 M5 = (A11 + A12)B22

M6 = A22B21 M6 = (A21 − A11)(B11 + B12)

M7 = A21B12 M7 = (A12 − A22)(B21 + B22)

M8 = A22B22

C11 = M1 +M2 C11 = M1 +M4 −M5 +M7

C12 = M3 +M4 C12 = M3 +M5

C21 = M5 +M6 C21 = M2 +M4

C22 = M7 +M8 C22 = M1 −M2 +M3 +M6

1
V. Strassen, Gaussian Elimination is not Optimal, 1969



Classical Matrix Multiplication vs Strassen’s Method and
others

I The constants in fast matrix multiplication methods are high
and for a typical application the classical method works better.

I The submatrices in recursion take extra space.

I Because of the limited precision of computer arithmetic on
noninteger values, larger errors accumulate



Notation

I For a matrix A ∈ Rn×d

I A(j) ∈ Rn×1 denotes the j-th column of A as a column vector

I A(i) ∈ R1×d denotes i-th row of A is a row vector

I A =
[
A(1) . . . A(d)

]
I A =

 A(1)
...

A(n)


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Notation

I for a vector x ∈ Rn

I ‖x‖2 =
√∑n

i=1 |xi |2 denotes its Euclidean length (`2-norm)

I for a matrix A ∈ Rn×d

I ‖A‖F =
√∑n

i=1

∑d
j=1 |Aij |2 is the Frobenius norm

I ‖A‖F = ‖vec(A)‖2)

where vec reshapes A into an nd × 1 vector
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Approximate Matrix Multiplication by random sampling

I matrix multiplication formula

(AB)ij =
d∑

k=1

AikBkj = A(i)B
(j)

I A(k)B
(k) are inner products

I same formula as a sum of outer products

AB =
d∑

k=1

A(k)B(k)

I AkBk are rank-1 matrices



Approximate Matrix Multiplication by random sampling

I matrix multiplication formula

(AB)ij =
d∑

k=1

AikBkj = A(i)B
(j)

I A(k)B
(k) are inner products

I same formula as a sum of outer products

AB =
d∑

k=1

A(k)B(k)

I AkBk are rank-1 matrices



Approximate Matrix Multiplication by random sampling

I matrix multiplication as sum of outer products

AB =
d∑

k=1

A(k)B(k)

I basic idea: sample m indices i1, ..., im ∈ {1, ..., d}

AB ≈?
m∑
t=1

A(it)B(it)



Required probability background

I Probability, events, random variables

I Expectation, variance, standard deviation

I Conditional probability, independence

A probability refresher will be posted on the course webpage



Approximate Matrix Multiplication by weighted sampling

I matrix multiplication as sum of outer products

AB =
d∑

k=1

A(k)B(k)

I weighted sampling: sample m indices i1, ..., im ∈ {1, ..., d}
independently with replacement such that

I P[it = k] = pk for all t

p1, ..., pd is a discrete probability distribution

AB ≈ 1

m

m∑
t=1

1

pit
A(it)B(it)



Approximate Matrix Multiplication by weighted sampling

I weighted sampling: sample m indices i1, ..., im ∈ {1, ..., d}
independently with replacement such that

I P[it = k] = pk for all t

AB ≈ 1

m

m∑
t=1

1

pit
A(it)B(it)

I E
[
1
m

∑m
t=1

1
pit
A(it)B(it)

]
=



Approximate Matrix Multiplication by weighted sampling

I yields a smaller matrix multiplication problem

AB ≈ 1

m

m∑
t=1

1

pit
A(it)B(it) , CR

I C =
[

1√
mpi1

A(i1) . . . 1√
mpim

A(im)
]

I R =


1√
mpi1

A(i1)

. . .
1√
mpim

A(im)





Approximate Matrix Multiplication

Algorithm 4 Approximate Matrix Multiplication via Sampling

Input: An n × d matrix A and an d × p matrix B, an integer m
and probabilities {pk}dk=1

Output: Matrices CR such that CR ≈ AB

1: for t = 1 to m do
2: Pick it ∈ {1, ..., d} with probability P[it = k] = pk in i.i.d.

with replacement
3: Set C (t) = 1√

mpit
A(it) and R(t) = 1√

mpit
B(it)

4: end for

I We can multiply CR using the classical algorithm

I Complexity O(nmp)



Approximate Matrix Multiplication

Algorithm 5 Approximate Matrix Multiplication via Sampling

Input: An n × d matrix A and an d × p matrix B, an integer m
and probabilities {pk}dk=1

Output: Matrices CR such that CR ≈ AB

1: for t = 1 to m do
2: Pick it ∈ {1, ..., d} with probability P[it = k] = pk in i.i.d.

with replacement
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Sampling probabilities

I Uniform sampling pk = 1
d for all k = 1, ...,m.

AB ≈ 1

m

m∑
t=1

1

d−1
A(it)B(it) , CR

I C =
[ √

d√
m
A(i1) . . .

√
d√
m
A(im)

]
I R =


√
d√
m
A(i1)

. . .√
d√
m
A(im)





AMM mean and variance

AB ≈ CR =
1

m

m∑
t=1

1

pit
A(it)B(it)

I Mean and variance of the matrix multiplication estimator

Lemma 2

I E [(CR)ij ] = (AB)ij

I Var [(CR)ij ] = 1
m

∑d
k=1

A2
ikB

2
kj

pk
− 1

m (AB)2ij

I E‖AB − CR‖2F =
∑

ij E(AB − CR)2ij =
∑

ij Var[(CR)ij ]

= 1
m

∑d
k=1

∑
i A

2
ik

∑
j B

2
kj

pk
− 1

m‖AB‖
2
F

= 1
m

∑d
k=1

1
pk
‖A(k)‖22‖B(k)‖22 − 1

m‖AB‖
2
F
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Uniform sampling guarantees

I pk = 1
d for k = 1, ..., d

AB ≈ CR =
d

m

m∑
t=1

A(it)B(it)

I We can choose sampling set before looking at data (oblivious)

I AMM algorithm can be performed in one pass over data

E‖AB − CR‖2F =
d

m

d∑
k=1

‖A(k)‖22‖B(k)‖22 −
1

m
‖AB‖2F



Optimal sampling probabilities

I Optimal sampling probabilities to minimize E‖AB − CR‖F
i.e., sum of variances

min
p1,...pd≥0∑

pk=1

E‖AB − CR‖F

= min
p1,...pd≥0∑

pk=1

1

m

d∑
k=1

1

pk
‖A(k)‖22‖B(k)‖22 −

1

m
‖AB‖2F



Optimal sampling probabilities

Let q1, ..., qd ∈ R given

min
p1,...pd≥0∑

pk=1

d∑
k=1

q2k
pk

I introduce a Lagrange multiplier for the constraint
∑

pk = 1



Optimal sampling probabilities

I Nonuniform sampling

pk =
‖A(k)‖2‖B(k)‖2∑
i ‖A(k)‖2‖B(k)‖2

I minimizes E‖AB − CR‖F
I E‖AB − CR‖2F = 1

m

∑d
k=1

1
pk
‖A(k)‖22‖B(k)‖22 − 1

m‖AB‖
2
F

= 1
m

(∑d
k=1 ‖A(k)‖2‖B(k)‖2

)2
− 1

m‖AB‖
2
F

is the optimal error



Special case: computing ATA

I Nonuniform sampling

pk =
‖A(k)‖22∑
i ‖A(k)‖2

I minimizes E‖ATA− CR‖F
note that C = RT



Probability Bounds

I So far we have results on the expectation of the error

I Markov’s Inequality

I If Z is a non-negative random variable and t > 0, then

P [Z > t] ≤ EZ
t



Probability Bounds for AMM

I Upper-bounding the error

E‖AB − CR‖2F =
1

m

(
d∑

k=1

‖A(k)‖2‖B(k)‖2

)2

− 1

m
‖AB‖2F

≤ 1

m

(
d∑

k=1

‖A(k)‖2‖B(k)‖2

)2

≤ 1

m


√√√√ d∑

k=1

‖A(k)‖22

√√√√ d∑
k=1

‖B(k)‖22

2

=
1

m
‖A‖2F‖B‖2F .

Applying Markov’s inequality

I P
[
‖AB − CR‖2F > ε2‖A‖2F‖B‖2F

]
≤ E‖AB−CR‖2F

ε‖A‖2F ‖B‖
2
F
≤ 1

m ε2



Final Probability Bound

I For any δ > 0, set m = 1
δ ε2

to obtain

P [‖AB − CR‖F > ε‖A‖F‖B‖F ] ≤ δ (1)

I i.e., ‖AB − CR‖F < ε‖A‖F‖B‖F with probability 1− δ.



Numerical simulations for AMM

I Approximating ATA

rows of A are i.i.d. Gaussian
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Numerical simulations for AMM

I Approximating ATA

rows of A are i.i.d. Student’s t-distribution (3 degrees of
freedom)
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Numerical simulations for AMM

I Approximating ATA

a subset of the CIFAR dataset
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Numerical simulations for AMM

I Approximating ATA

sparse matrix from a computational fluid dynamics model
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Questions?


