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Department of Statistics, UC Berkeley

EE270, Stanford University
March 5, 2020

1 / 37



Outline

Introduction

Determinantal point processes

DPPs in Randomized Linear Algebra

Key technique: Determinant preserving random matrices

Sampling algorithms

Conclusions

2 / 37



Randomized Linear Algebra

Given: data matrix X

Goal: efficiently construct a small sketch X̃
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Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large... or exponentially small
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And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]
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L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)
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Volume (determinant) as a measure of diversity

Let L =
[
x>i xj

]
ij

for x1, . . . , xn ∈ Rd .

Then, det(LS,S) = Vol2
(
{xi : i ∈ S}

)

Image from [KT12]
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Example: DPP vs i.i.d.

Negative correlation: Pr(i ∈ S | j ∈ S) < Pr(i ∈ S)

i.i.d. (left) versus DPP (right)

Image from [KT12]
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Projection DPPs

If L has rank d , then S ∼ d-DPP(L) is a Projection DPP

Let L = XX> for a full rank n × d matrix X

if S ∼ d-DPP(L) then Pr(S) =
det(XS)2

det(X>X)
.

Closed form normalization (Cauchy-Binet formula).

Remark. If k < rank(L) then k-DPP(L) is not a projection DPP.
(and also does not have such a simple normalization constant)
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Hierarchy of DPPs

Broader class of negatively-correlated point processes:
Strongly Rayleigh (SR) measures

SR measures

DPPs

L-ensembles k-DPPs

Projection DPPs
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Random vs fixed subset size

Let d = rank(L), and λ1, ..., λd be the non-zero eigenvalues of L
If S ∼ DPP(L) then:

|S | ∼ Poisson-Binomial
(

λ1
λ1+1 , ...,

λd
λd+1

)

E
[
|S |
]

=
d∑

i=1

λi
λi + 1

= tr
(
L(L + I)−1

)
< d

Rescaling trick: Sample S ∼ DPP( 1
λL) to control E[|S |]

Pr(S) ∝ det( 1
λLS ,S) = λ−|S | det(LS ,S)

DPP
(

1
λL
)︸ ︷︷ ︸

L-ensemble

λ→0−→ d-DPP
(
L
)︸ ︷︷ ︸

Projection DPP
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DPPs in Randomized Linear Algebra

Given: data matrix X

Goal (row sampling): construct X̃ from few rows of X

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

i.i.d. sampling:

DPP sampling:
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Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP( 1

λXX
>)
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Subsampled least squares

Given: n points xi ∈ Rd with labels yi ∈ R
Goal: Minimize loss L(w) =

∑
i (x
>
i w − yi )

2 over all n points

w∗ = argmin
w

L(w) = X†y

n

d

X y
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∑
i (x
>
i w − yi )

2 over all n points

w∗ = argmin
w

L(w) = X†y

Sample S = {4, 6, 9}

Solve subproblem
(XS , yS)

x>
4

x>
6

x>
9

X
d

y

y4 .
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Unbiased estimators

Theorem (Rank-preserving sketch, [DW17])

If S ∼ d-DPP(XX>), then:

E[X−1
S yS ] =

least squares︷ ︸︸ ︷
argmin

w
L(w) = w∗ .

Theorem (Low-rank sketch, [DLM19])

If S ∼ DPP( 1
λXX

>), then:

E[X†SyS ] =

ridge regression︷ ︸︸ ︷
argmin

w
L(w) + λ‖w‖2

Not achievable with any i.i.d. row sampling!
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Merits of unbiased estimators

Simple Strategy:
1. Compute independent estimators w(Sj) for j = 1, .., k ,

2. Predict with the average estimator 1
k

∑k
j=1 w(Sj)

If we have

E[L(w(S))] ≤ (1 + c)L(w∗) and E[w(S)] = w∗,

then for k independent samples S1, . . . ,Sk ,

E
[
L
(1

k

k∑
j=1

w(Sj)
)]
≤
(

1 +
c

k

)
L(w∗)

Motivation:

I Ensemble methods

I Distributed optimization

I Privacy
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Connections to Gaussian sketches

Gaussian sketch
(Also gives unbiased estimators for least squares)

Let S be a k × n i.i.d. Gaussian matrix. Recall that for k > d + 1:

E
[
(X>S>SX)−1

]
= (X>X)−1 k

k − d − 1

DPP plus uniform

Let S ∼ d-DPP(XX>), T ∼ Bin(n, k−dn−d ) and S̄ =
[√

n
k ei
]>
i∈S∪T .

Note: E[|S |] = k. For k ≥ d , we have:

E
[
(X>S̄>S̄X)−1

]
= (X>X)−1 k

k − d
·
(
1− on(1)

)

DPPs have a “Gaussianizing” effect on row sampling.
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Determinant preserving random matrices

Definition ([DLM19])

A random d × d matrix A is determinant preserving (d.p.) if

E
[
det(AI,J )

]
= det

(
E[AI,J ]

)
for all I,J ⊆ [d ] s.t. |I| = |J |.

Basic examples:

I Every deterministic matrix

I Every scalar random variable

I Random matrix with i.i.d. Gaussian entries
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More examples

Let A = s Z, where:

I Z is deterministic with rank(Z) = r ,

I s is a scalar random variable with positive variance.

E
[

det(s ZI,J )
]

= E[sr ] det(ZI,J ) = det
((

E[sr ]
) 1

r ZI,J
)
,

Two cases:

1. If r = 1 then A is determinant preserving,

2. If r > 1 then A is not determinant preserving.
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Basic properties

Lemma (Closure)

If A and B are independent and determinant preserving, then:

I A + B is determinant preserving,

I AB is determinant preserving.

Lemma (Adjugate)

If A is determinant preserving, then E[adj(A)] = adj(E[A]).

When A is invertible then adj(A) = det(A)A−1

Note: The (i , j)th entry of adj(A) is (−1)i+j det(A[n]\{j},[n]\{i}).
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Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J )
]

= E
[
det(AI,J ) + v>J adj(AI,J )uI

]

= det
(
E[AI,J ]

)
+ v>J adj

(
E[AI,J ]

)
uI

= det
(
E[AI,J + uIv

>
J ]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J )

]
= E

[
E
[
det(AI,J + BI,J ) | B

]]

= E
[
det
(
E[AI,J ]+ BI,J

)]
= det

(
E[AI,J + BI,J ]

)
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Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄ ])

det(E[X>
S̄
XS̄ ])

=
(
E[X>

S̄
XS̄ ]
)−1

= (pX>X)−1
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Algorithmic challenges with sampling from DPPs

Task:

(variant 1) Given L, sample S ∼ DPP(L)

(variant 2) Given L and k , sample S ∼ k-DPP(L)

(Task B: we are given n× d matrix X ∈ Rd instead of L = XX>)

Challenges:

1. Expensive preprocessing

typically involves eigendecomposition of L in O(n3) time

2. Sampling time scales with n rather than with |S | � n

undesirable when we need many samples S1,S2, · · · ∼ DPP(L)

3. Trade-offs between accuracy and runtime
I exact algorithms - often too expensive

I approximate algorithms - difficult to evaluate accuracy
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Exact DPP sampling

Key result: any DPP is a mixture of Projection DPPs [HKP+06]

I Eigendecomposition O(n3)
needed only once for a given kernel

I Reduction to a projection DPP O(n |S |2)
needed for every sample

I Cost of first sample S1 ∼ DPP(L): O(n3)

I Cost of next sample S2 ∼ DPP(L): O(nk2) (k = E[|S |])

Extends to a k-DPP sampler [KT11]
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Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j )
det(LS )

}
4. ...

Converges in O(nk log 1
ε ) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]
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Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37



Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37



Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37



Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37



Distortion-free intermediate sampling for L-ensembles

Theorem ([DCV19])

There is an algorithm which, given access to L, returns

1. first sample S1 ∼ DPP(L) in: n · poly(k)polylog(n) time,

2. next sample S2 ∼ DPP(L) in: poly(k) time.

I Exact sampling

I Cost of first sample is sublinear in the size of L

I Cost of next sample is independent of the size of L
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Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...
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