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Randomized Linear Algebra

Given: data matrix X

Goal: efficiently construct a small sketch X̃
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Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large... or exponentially small
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And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]
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L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)
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Volume (determinant) as a measure of diversity

Let L =
[
x>i xj

]
ij

for x1, . . . , xn ∈ Rd .

Then, det(LS,S) = Vol2
(
{xi : i ∈ S}

)

Image from [KT12]
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Example: DPP vs i.i.d.

Negative correlation: Pr(i ∈ S | j ∈ S) < Pr(i ∈ S)

i.i.d. (left) versus DPP (right)

Image from [KT12]
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Projection DPPs

If L has rank d , then S ∼ d-DPP(L) is a Projection DPP

Let L = XX> for a full rank n × d matrix X

if S ∼ d-DPP(L) then Pr(S) =
det(XS)2

det(X>X)
.

Closed form normalization (Cauchy-Binet formula).

Remark. If k < rank(L) then k-DPP(L) is not a projection DPP.
(and also does not have such a simple normalization constant)
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Hierarchy of DPPs

Broader class of negatively-correlated point processes:
Strongly Rayleigh (SR) measures

SR measures

DPPs

L-ensembles k-DPPs

Projection DPPs
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Random vs fixed subset size

Let d = rank(L), and λ1, ..., λd be the non-zero eigenvalues of L
If S ∼ DPP(L) then:

|S | ∼ Poisson-Binomial
(

λ1
λ1+1 , ...,

λd
λd+1

)

E
[
|S |
]

=
d∑

i=1

λi
λi + 1

= tr
(
L(L + I)−1

)
< d

Rescaling trick: Sample S ∼ DPP( 1
λL) to control E[|S |]

Pr(S) ∝ det( 1
λLS ,S) = λ−|S | det(LS ,S)

DPP
(

1
λL
)︸ ︷︷ ︸

L-ensemble

λ→0−→ d-DPP
(
L
)︸ ︷︷ ︸

Projection DPP
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DPPs in Randomized Linear Algebra

Given: data matrix X

Goal (row sampling): construct X̃ from few rows of X

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

i.i.d. sampling:

DPP sampling:

14 / 37



DPPs in Randomized Linear Algebra

Given: data matrix X

Goal (row sampling): construct X̃ from few rows of X

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

i.i.d. sampling: Leverage scores Ridge leverage scores

DPP sampling:

14 / 37



DPPs in Randomized Linear Algebra

Given: data matrix X

Goal (row sampling): construct X̃ from few rows of X

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

i.i.d. sampling: Leverage scores Ridge leverage scores

DPP sampling: Projection DPPs L-ensembles

14 / 37



Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP( 1

λXX
>)
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Subsampled least squares

Given: n points xi ∈ Rd with labels yi ∈ R
Goal: Minimize loss L(w) =

∑
i (x
>
i w − yi )

2 over all n points

w∗ = argmin
w

L(w) = X†y

n

d

X y
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∑
i (x
>
i w − yi )

2 over all n points

w∗ = argmin
w

L(w) = X†y

Sample S = {4, 6, 9}

Solve subproblem
(XS , yS)

x>
4

x>
6

x>
9

X
d

y

y4 .
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Unbiased estimators

Theorem (Rank-preserving sketch, [DW17])

If S ∼ d-DPP(XX>), then:

E[X−1
S yS ] =

least squares︷ ︸︸ ︷
argmin

w
L(w) = w∗ .

Theorem (Low-rank sketch, [DLM19])

If S ∼ DPP( 1
λXX

>), then:

E[X†SyS ] =

ridge regression︷ ︸︸ ︷
argmin

w
L(w) + λ‖w‖2

Not achievable with any i.i.d. row sampling!
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Merits of unbiased estimators

Simple Strategy:
1. Compute independent estimators w(Sj) for j = 1, .., k ,

2. Predict with the average estimator 1
k

∑k
j=1 w(Sj)

If we have

E[L(w(S))] ≤ (1 + c)L(w∗) and E[w(S)] = w∗,

then for k independent samples S1, . . . ,Sk ,

E
[
L
(1

k

k∑
j=1

w(Sj)
)]
≤
(

1 +
c

k

)
L(w∗)

Motivation:

I Ensemble methods

I Distributed optimization

I Privacy
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Connections to Gaussian sketches

Gaussian sketch
(Also gives unbiased estimators for least squares)

Let S be a k × n i.i.d. Gaussian matrix. Recall that for k > d + 1:

E
[
(X>S>SX)−1

]
= (X>X)−1 k

k − d − 1

DPP plus uniform

Let S ∼ d-DPP(XX>), T ∼ Bin(n, k−dn−d ) and S̄ =
[√

n
k ei
]>
i∈S∪T .

Note: E[|S |] = k. For k ≥ d , we have:

E
[
(X>S̄>S̄X)−1

]
= (X>X)−1 k

k − d
·
(
1− on(1)

)

DPPs have a “Gaussianizing” effect on row sampling.
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Determinant preserving random matrices

Definition ([DLM19])

A random d × d matrix A is determinant preserving (d.p.) if

E
[
det(AI,J )

]
= det

(
E[AI,J ]

)
for all I,J ⊆ [d ] s.t. |I| = |J |.

Basic examples:

I Every deterministic matrix

I Every scalar random variable

I Random matrix with i.i.d. Gaussian entries
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More examples

Let A = s Z, where:

I Z is deterministic with rank(Z) = r ,

I s is a scalar random variable with positive variance.

E
[

det(s ZI,J )
]

= E[sr ] det(ZI,J ) = det
((

E[sr ]
) 1

r ZI,J
)
,

Two cases:

1. If r = 1 then A is determinant preserving,

2. If r > 1 then A is not determinant preserving.
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Basic properties

Lemma (Closure)

If A and B are independent and determinant preserving, then:

I A + B is determinant preserving,

I AB is determinant preserving.

Lemma (Adjugate)

If A is determinant preserving, then E[adj(A)] = adj(E[A]).

When A is invertible then adj(A) = det(A)A−1

Note: The (i , j)th entry of adj(A) is (−1)i+j det(A[n]\{j},[n]\{i}).
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Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J )
]

= E
[
det(AI,J ) + v>J adj(AI,J )uI

]

= det
(
E[AI,J ]

)
+ v>J adj

(
E[AI,J ]

)
uI

= det
(
E[AI,J + uIv

>
J ]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J )

]
= E

[
E
[
det(AI,J + BI,J ) | B

]]

= E
[
det
(
E[AI,J ]+ BI,J

)]
= det

(
E[AI,J + BI,J ]

)
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Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄ ])

det(E[X>
S̄
XS̄ ])

=
(
E[X>

S̄
XS̄ ]
)−1

= (pX>X)−1
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Algorithmic challenges with sampling from DPPs

Task:

(variant 1) Given L, sample S ∼ DPP(L)

(variant 2) Given L and k, sample S ∼ k-DPP(L)

(Task B: we are given n× d matrix X ∈ Rd instead of L = XX>)

Challenges:

1. Expensive preprocessing

typically involves eigendecomposition of L in O(n3) time

2. Sampling time scales with n rather than with |S | � n

undesirable when we need many samples S1,S2, · · · ∼ DPP(L)

3. Trade-offs between accuracy and runtime
I exact algorithms - often too expensive

I approximate algorithms - difficult to evaluate accuracy
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Exact DPP sampling

Key result: any DPP is a mixture of Projection DPPs [HKP+06]

I Eigendecomposition O(n3)
needed only once for a given kernel

I Reduction to a projection DPP O(n |S |2)
needed for every sample

I Cost of first sample S1 ∼ DPP(L): O(n3)

I Cost of next sample S2 ∼ DPP(L): O(nk2) (k = E[|S |])

Extends to a k-DPP sampler [KT11]
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Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j )
det(LS )

}
4. ...

Converges in O(nk log 1
ε ) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]
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Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37



Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37



Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37



Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37



Distortion-free intermediate sampling for L-ensembles

Theorem ([DCV19])

There is an algorithm which, given access to L, returns

1. first sample S1 ∼ DPP(L) in: n · poly(k)polylog(n) time,

2. next sample S2 ∼ DPP(L) in: poly(k) time.

I Exact sampling

I Cost of first sample is sublinear in the size of L

I Cost of next sample is independent of the size of L
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Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37



Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37



Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37



Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37



Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37



References I

Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei.

Monte carlo markov chain algorithms for sampling strongly rayleigh distributions and determinantal point

processes.

In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learning

Theory, volume 49 of Proceedings of Machine Learning Research, pages 103–115, Columbia University, New

York, New York, USA, 23–26 Jun 2016. PMLR.
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