
Determinantal Point Processes
in Randomized Linear Algebra

Micha l Dereziński
Department of Statistics, UC Berkeley

EE270, Stanford University
March 5, 2020

1 / 37

Outline

Introduction

Determinantal point processes

DPPs in Randomized Linear Algebra

Key technique: Determinant preserving random matrices

Sampling algorithms

Conclusions

2 / 37

Randomized Linear Algebra

Given: data matrix X

Goal: efficiently construct a small sketch X̃

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

3 / 37

Randomized Linear Algebra

Given: data matrix X

Goal: efficiently construct a small sketch X̃

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

3 / 37

Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large... or exponentially small

4 / 37

Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large... or exponentially small

4 / 37

Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large... or exponentially small

4 / 37

Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large... or exponentially small

4 / 37

Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large...

or exponentially small

4 / 37

Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large... or exponentially small

4 / 37

Determinants

det(A) =
∏
i

λi (A)

Some popular wisdom about determinants:

I Expensive to compute

I Numerically unstable

I Exponentially large... or exponentially small

4 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

And yet... Determinantal Point Processes (DPPs)

A family of non-i.i.d. sampling distributions

1. Applications in Randomized Linear Algebra

I Least squares regression [DW17, DWH18]

I Low-rank approximation [DRVW06, GS12, DKM20]

I Randomized Newton’s method [DM19, MDK19]

2. Connections to i.i.d. sampling methods

I Row norm scores

I Leverage scores

I Ridge leverage scores

3. Fast DPP sampling algorithms

I Exact sampling via eigendecomposition [HKP+06, KT11]

I Intermediate sampling via leverage scores [Der19, DCV19]

I Markov chain Monte Carlo sampling [AGR16]

5 / 37

Outline

Introduction

Determinantal point processes

DPPs in Randomized Linear Algebra

Key technique: Determinant preserving random matrices

Sampling algorithms

Conclusions

6 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

L-ensemble DPPs and k-DPPs

Given a psd n × n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S | = k .

DPPs appear everywhere!

I Physics (fermions)

I Random matrix theory (eigenvalue distribution)

I Graph theory (random spanning trees)

I Optimization (variance reduction)

I Machine learning (diverse sets)

7 / 37

Volume (determinant) as a measure of diversity

Let L =
[
x>i xj

]
ij

for x1, . . . , xn ∈ Rd .

Then, det(LS,S) = Vol2
(
{xi : i ∈ S}

)

Image from [KT12]
8 / 37

Volume (determinant) as a measure of diversity

Let L =
[
x>i xj

]
ij

for x1, . . . , xn ∈ Rd .

Then, det(LS,S) = Vol2
(
{xi : i ∈ S}

)

Image from [KT12]
8 / 37

Volume (determinant) as a measure of diversity

Let L =
[
x>i xj

]
ij

for x1, . . . , xn ∈ Rd .

Then, det(LS,S) = Vol2
(
{xi : i ∈ S}

)

Image from [KT12]
8 / 37

Example: DPP vs i.i.d.

Negative correlation: Pr(i ∈ S | j ∈ S) < Pr(i ∈ S)

i.i.d. (left) versus DPP (right)

Image from [KT12]
9 / 37

Example: DPP vs i.i.d.

Negative correlation: Pr(i ∈ S | j ∈ S) < Pr(i ∈ S)

i.i.d. (left) versus DPP (right)

Image from [KT12]
9 / 37

Projection DPPs

If L has rank d , then S ∼ d-DPP(L) is a Projection DPP

Let L = XX> for a full rank n × d matrix X

if S ∼ d-DPP(L) then Pr(S) =
det(XS)2

det(X>X)
.

Closed form normalization (Cauchy-Binet formula).

Remark. If k < rank(L) then k-DPP(L) is not a projection DPP.
(and also does not have such a simple normalization constant)

10 / 37

Projection DPPs

If L has rank d , then S ∼ d-DPP(L) is a Projection DPP

Let L = XX> for a full rank n × d matrix X

if S ∼ d-DPP(L) then Pr(S) =
det(XS)2

det(X>X)
.

Closed form normalization (Cauchy-Binet formula).

Remark. If k < rank(L) then k-DPP(L) is not a projection DPP.
(and also does not have such a simple normalization constant)

10 / 37

Projection DPPs

If L has rank d , then S ∼ d-DPP(L) is a Projection DPP

Let L = XX> for a full rank n × d matrix X

if S ∼ d-DPP(L) then Pr(S) =
det(XS)2

det(X>X)
.

Closed form normalization (Cauchy-Binet formula).

Remark. If k < rank(L) then k-DPP(L) is not a projection DPP.
(and also does not have such a simple normalization constant)

10 / 37

Projection DPPs

If L has rank d , then S ∼ d-DPP(L) is a Projection DPP

Let L = XX> for a full rank n × d matrix X

if S ∼ d-DPP(L) then Pr(S) =
det(XS)2

det(X>X)
.

Closed form normalization (Cauchy-Binet formula).

Remark. If k < rank(L) then k-DPP(L) is not a projection DPP.
(and also does not have such a simple normalization constant)

10 / 37

Hierarchy of DPPs

Broader class of negatively-correlated point processes:
Strongly Rayleigh (SR) measures

SR measures

DPPs

L-ensembles k-DPPs

Projection DPPs

11 / 37

Random vs fixed subset size

Let d = rank(L), and λ1, ..., λd be the non-zero eigenvalues of L
If S ∼ DPP(L) then:

|S | ∼ Poisson-Binomial
(

λ1
λ1+1 , ...,

λd
λd+1

)

E
[
|S |
]

=
d∑

i=1

λi
λi + 1

= tr
(
L(L + I)−1

)
< d

Rescaling trick: Sample S ∼ DPP(1
λL) to control E[|S |]

Pr(S) ∝ det(1
λLS ,S) = λ−|S | det(LS ,S)

DPP
(

1
λL
)︸ ︷︷ ︸

L-ensemble

λ→0−→ d-DPP
(
L
)︸ ︷︷ ︸

Projection DPP

12 / 37

Random vs fixed subset size

Let d = rank(L), and λ1, ..., λd be the non-zero eigenvalues of L
If S ∼ DPP(L) then:

|S | ∼ Poisson-Binomial
(

λ1
λ1+1 , ...,

λd
λd+1

)
E
[
|S |
]

=
d∑

i=1

λi
λi + 1

= tr
(
L(L + I)−1

)
< d

Rescaling trick: Sample S ∼ DPP(1
λL) to control E[|S |]

Pr(S) ∝ det(1
λLS ,S) = λ−|S | det(LS ,S)

DPP
(

1
λL
)︸ ︷︷ ︸

L-ensemble

λ→0−→ d-DPP
(
L
)︸ ︷︷ ︸

Projection DPP

12 / 37

Random vs fixed subset size

Let d = rank(L), and λ1, ..., λd be the non-zero eigenvalues of L
If S ∼ DPP(L) then:

|S | ∼ Poisson-Binomial
(

λ1
λ1+1 , ...,

λd
λd+1

)
E
[
|S |
]

=
d∑

i=1

λi
λi + 1

= tr
(
L(L + I)−1

)
< d

Rescaling trick: Sample S ∼ DPP(1
λL) to control E[|S |]

Pr(S) ∝ det(1
λLS ,S) = λ−|S | det(LS ,S)

DPP
(

1
λL
)︸ ︷︷ ︸

L-ensemble

λ→0−→ d-DPP
(
L
)︸ ︷︷ ︸

Projection DPP

12 / 37

Random vs fixed subset size

Let d = rank(L), and λ1, ..., λd be the non-zero eigenvalues of L
If S ∼ DPP(L) then:

|S | ∼ Poisson-Binomial
(

λ1
λ1+1 , ...,

λd
λd+1

)
E
[
|S |
]

=
d∑

i=1

λi
λi + 1

= tr
(
L(L + I)−1

)
< d

Rescaling trick: Sample S ∼ DPP(1
λL) to control E[|S |]

Pr(S) ∝ det(1
λLS ,S) = λ−|S | det(LS ,S)

DPP
(

1
λL
)︸ ︷︷ ︸

L-ensemble

λ→0−→ d-DPP
(
L
)︸ ︷︷ ︸

Projection DPP

12 / 37

Random vs fixed subset size

Let d = rank(L), and λ1, ..., λd be the non-zero eigenvalues of L
If S ∼ DPP(L) then:

|S | ∼ Poisson-Binomial
(

λ1
λ1+1 , ...,

λd
λd+1

)
E
[
|S |
]

=
d∑

i=1

λi
λi + 1

= tr
(
L(L + I)−1

)
< d

Rescaling trick: Sample S ∼ DPP(1
λL) to control E[|S |]

Pr(S) ∝ det(1
λLS ,S) = λ−|S | det(LS ,S)

DPP
(

1
λL
)︸ ︷︷ ︸

L-ensemble

λ→0−→ d-DPP
(
L
)︸ ︷︷ ︸

Projection DPP

12 / 37

Outline

Introduction

Determinantal point processes

DPPs in Randomized Linear Algebra

Key technique: Determinant preserving random matrices

Sampling algorithms

Conclusions

13 / 37

DPPs in Randomized Linear Algebra

Given: data matrix X

Goal (row sampling): construct X̃ from few rows of X

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

i.i.d. sampling:

DPP sampling:

14 / 37

DPPs in Randomized Linear Algebra

Given: data matrix X

Goal (row sampling): construct X̃ from few rows of X

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

i.i.d. sampling: Leverage scores Ridge leverage scores

DPP sampling:

14 / 37

DPPs in Randomized Linear Algebra

Given: data matrix X

Goal (row sampling): construct X̃ from few rows of X

X

X̃

Rank-preserving sketch

X

X̃

Low-rank approximation

i.i.d. sampling: Leverage scores Ridge leverage scores

DPP sampling: Projection DPPs L-ensembles

14 / 37

Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP(1

λXX
>)

15 / 37

Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP(1

λXX
>)

15 / 37

Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP(1

λXX
>)

15 / 37

Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP(1

λXX
>)

15 / 37

Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP(1

λXX
>)

15 / 37

Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP(1

λXX
>)

15 / 37

Connections to i.i.d. sampling

Given: full rank n × d matrix X

Methods based on i.i.d. row sampling:

1. Row norm scores: pi = ‖xi‖2

‖X‖2
F

‖xi‖2

‖X‖2
F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2. Leverage scores: pi = 1
d x
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3. Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP(1

λXX
>)

15 / 37

Subsampled least squares

Given: n points xi ∈ Rd with labels yi ∈ R
Goal: Minimize loss L(w) =

∑
i (x
>
i w − yi)

2 over all n points

w∗ = argmin
w

L(w) = X†y

n

d

X y

16 / 37

Subsampled least squares

Given: n points xi ∈ Rd with labels yi ∈ R
Goal: Minimize loss L(w) =

∑
i (x
>
i w − yi)

2 over all n points

w∗ = argmin
w

L(w) = X†y

Sample S = {4, 6, 9}

Solve subproblem
(XS , yS)

x>
4

x>
6

x>
9

X
d

y

y4 .
y6 .

y9

16 / 37

Unbiased estimators

Theorem (Rank-preserving sketch, [DW17])

If S ∼ d-DPP(XX>), then:

E[X−1
S yS] =

least squares︷ ︸︸ ︷
argmin

w
L(w) = w∗ .

Theorem (Low-rank sketch, [DLM19])

If S ∼ DPP(1
λXX

>), then:

E[X†SyS] =

ridge regression︷ ︸︸ ︷
argmin

w
L(w) + λ‖w‖2

Not achievable with any i.i.d. row sampling!

17 / 37

Unbiased estimators

Theorem (Rank-preserving sketch, [DW17])

If S ∼ d-DPP(XX>), then:

E[X−1
S yS] =

least squares︷ ︸︸ ︷
argmin

w
L(w) = w∗ .

Theorem (Low-rank sketch, [DLM19])

If S ∼ DPP(1
λXX

>), then:

E[X†SyS] =

ridge regression︷ ︸︸ ︷
argmin

w
L(w) + λ‖w‖2

Not achievable with any i.i.d. row sampling!

17 / 37

Unbiased estimators

Theorem (Rank-preserving sketch, [DW17])

If S ∼ d-DPP(XX>), then:

E[X−1
S yS] =

least squares︷ ︸︸ ︷
argmin

w
L(w) = w∗ .

Theorem (Low-rank sketch, [DLM19])

If S ∼ DPP(1
λXX

>), then:

E[X†SyS] =

ridge regression︷ ︸︸ ︷
argmin

w
L(w) + λ‖w‖2

Not achievable with any i.i.d. row sampling!
17 / 37

Merits of unbiased estimators

Simple Strategy:
1. Compute independent estimators w(Sj) for j = 1, .., k ,

2. Predict with the average estimator 1
k

∑k
j=1 w(Sj)

If we have

E[L(w(S))] ≤ (1 + c)L(w∗) and E[w(S)] = w∗,

then for k independent samples S1, . . . ,Sk ,

E
[
L
(1

k

k∑
j=1

w(Sj)
)]
≤
(

1 +
c

k

)
L(w∗)

Motivation:

I Ensemble methods

I Distributed optimization

I Privacy

18 / 37

Merits of unbiased estimators

Simple Strategy:
1. Compute independent estimators w(Sj) for j = 1, .., k ,

2. Predict with the average estimator 1
k

∑k
j=1 w(Sj)

If we have

E[L(w(S))] ≤ (1 + c)L(w∗) and E[w(S)] = w∗,

then for k independent samples S1, . . . ,Sk ,

E
[
L
(1

k

k∑
j=1

w(Sj)
)]
≤
(

1 +
c

k

)
L(w∗)

Motivation:

I Ensemble methods

I Distributed optimization

I Privacy

18 / 37

Merits of unbiased estimators

Simple Strategy:
1. Compute independent estimators w(Sj) for j = 1, .., k ,

2. Predict with the average estimator 1
k

∑k
j=1 w(Sj)

If we have

E[L(w(S))] ≤ (1 + c)L(w∗) and E[w(S)] = w∗,

then for k independent samples S1, . . . ,Sk ,

E
[
L
(1

k

k∑
j=1

w(Sj)
)]
≤
(

1 +
c

k

)
L(w∗)

Motivation:

I Ensemble methods

I Distributed optimization

I Privacy
18 / 37

Connections to Gaussian sketches

Gaussian sketch
(Also gives unbiased estimators for least squares)

Let S be a k × n i.i.d. Gaussian matrix. Recall that for k > d + 1:

E
[
(X>S>SX)−1

]
= (X>X)−1 k

k − d − 1

DPP plus uniform

Let S ∼ d-DPP(XX>), T ∼ Bin(n, k−dn−d) and S̄ =
[√

n
k ei
]>
i∈S∪T .

Note: E[|S |] = k. For k ≥ d , we have:

E
[
(X>S̄>S̄X)−1

]
= (X>X)−1 k

k − d
·
(
1− on(1)

)

DPPs have a “Gaussianizing” effect on row sampling.

19 / 37

Connections to Gaussian sketches

Gaussian sketch
(Also gives unbiased estimators for least squares)

Let S be a k × n i.i.d. Gaussian matrix. Recall that for k > d + 1:

E
[
(X>S>SX)−1

]
= (X>X)−1 k

k − d − 1

DPP plus uniform

Let S ∼ d-DPP(XX>), T ∼ Bin(n, k−dn−d) and S̄ =
[√

n
k ei
]>
i∈S∪T .

Note: E[|S |] = k. For k ≥ d , we have:

E
[
(X>S̄>S̄X)−1

]
= (X>X)−1 k

k − d
·
(
1− on(1)

)

DPPs have a “Gaussianizing” effect on row sampling.

19 / 37

Connections to Gaussian sketches

Gaussian sketch
(Also gives unbiased estimators for least squares)

Let S be a k × n i.i.d. Gaussian matrix. Recall that for k > d + 1:

E
[
(X>S>SX)−1

]
= (X>X)−1 k

k − d − 1

DPP plus uniform

Let S ∼ d-DPP(XX>), T ∼ Bin(n, k−dn−d) and S̄ =
[√

n
k ei
]>
i∈S∪T .

Note: E[|S |] = k. For k ≥ d , we have:

E
[
(X>S̄>S̄X)−1

]
= (X>X)−1 k

k − d
·
(
1− on(1)

)

DPPs have a “Gaussianizing” effect on row sampling.

19 / 37

Connections to Gaussian sketches

Gaussian sketch
(Also gives unbiased estimators for least squares)

Let S be a k × n i.i.d. Gaussian matrix. Recall that for k > d + 1:

E
[
(X>S>SX)−1

]
= (X>X)−1 k

k − d − 1

DPP plus uniform

Let S ∼ d-DPP(XX>), T ∼ Bin(n, k−dn−d) and S̄ =
[√

n
k ei
]>
i∈S∪T .

Note: E[|S |] = k. For k ≥ d , we have:

E
[
(X>S̄>S̄X)−1

]
= (X>X)−1 k

k − d
·
(
1− on(1)

)

DPPs have a “Gaussianizing” effect on row sampling.

19 / 37

Outline

Introduction

Determinantal point processes

DPPs in Randomized Linear Algebra

Key technique: Determinant preserving random matrices

Sampling algorithms

Conclusions

20 / 37

Determinant preserving random matrices

Definition ([DLM19])

A random d × d matrix A is determinant preserving (d.p.) if

E
[
det(AI,J)

]
= det

(
E[AI,J]

)
for all I,J ⊆ [d] s.t. |I| = |J |.

Basic examples:

I Every deterministic matrix

I Every scalar random variable

I Random matrix with i.i.d. Gaussian entries

21 / 37

Determinant preserving random matrices

Definition ([DLM19])

A random d × d matrix A is determinant preserving (d.p.) if

E
[
det(AI,J)

]
= det

(
E[AI,J]

)
for all I,J ⊆ [d] s.t. |I| = |J |.

Basic examples:

I Every deterministic matrix

I Every scalar random variable

I Random matrix with i.i.d. Gaussian entries

21 / 37

Determinant preserving random matrices

Definition ([DLM19])

A random d × d matrix A is determinant preserving (d.p.) if

E
[
det(AI,J)

]
= det

(
E[AI,J]

)
for all I,J ⊆ [d] s.t. |I| = |J |.

Basic examples:

I Every deterministic matrix

I Every scalar random variable

I Random matrix with i.i.d. Gaussian entries

21 / 37

Determinant preserving random matrices

Definition ([DLM19])

A random d × d matrix A is determinant preserving (d.p.) if

E
[
det(AI,J)

]
= det

(
E[AI,J]

)
for all I,J ⊆ [d] s.t. |I| = |J |.

Basic examples:

I Every deterministic matrix

I Every scalar random variable

I Random matrix with i.i.d. Gaussian entries

21 / 37

More examples

Let A = s Z, where:

I Z is deterministic with rank(Z) = r ,

I s is a scalar random variable with positive variance.

E
[

det(s ZI,J)
]

= E[sr] det(ZI,J) = det
((

E[sr]
) 1

r ZI,J
)
,

Two cases:

1. If r = 1 then A is determinant preserving,

2. If r > 1 then A is not determinant preserving.

22 / 37

More examples

Let A = s Z, where:

I Z is deterministic with rank(Z) = r ,

I s is a scalar random variable with positive variance.

E
[

det(s ZI,J)
]

= E[sr] det(ZI,J) = det
((

E[sr]
) 1

r ZI,J
)
,

Two cases:

1. If r = 1 then A is determinant preserving,

2. If r > 1 then A is not determinant preserving.

22 / 37

More examples

Let A = s Z, where:

I Z is deterministic with rank(Z) = r ,

I s is a scalar random variable with positive variance.

E
[

det(s ZI,J)
]

= E[sr] det(ZI,J) = det
((

E[sr]
) 1

r ZI,J
)
,

Two cases:

1. If r = 1 then A is determinant preserving,

2. If r > 1 then A is not determinant preserving.

22 / 37

Basic properties

Lemma (Closure)

If A and B are independent and determinant preserving, then:

I A + B is determinant preserving,

I AB is determinant preserving.

Lemma (Adjugate)

If A is determinant preserving, then E[adj(A)] = adj(E[A]).

When A is invertible then adj(A) = det(A)A−1

Note: The (i , j)th entry of adj(A) is (−1)i+j det(A[n]\{j},[n]\{i}).

23 / 37

Basic properties

Lemma (Closure)

If A and B are independent and determinant preserving, then:

I A + B is determinant preserving,

I AB is determinant preserving.

Lemma (Adjugate)

If A is determinant preserving, then E[adj(A)] = adj(E[A]).

When A is invertible then adj(A) = det(A)A−1

Note: The (i , j)th entry of adj(A) is (−1)i+j det(A[n]\{j},[n]\{i}).

23 / 37

Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J)
]

= E
[
det(AI,J) + v>J adj(AI,J)uI

]

= det
(
E[AI,J]

)
+ v>J adj

(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv

>
J]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]

= E
[
det
(
E[AI,J]+ BI,J

)]
= det

(
E[AI,J + BI,J]

)

24 / 37

Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J)
]

= E
[
det(AI,J) + v>J adj(AI,J)uI

]

= det
(
E[AI,J]

)
+ v>J adj

(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv

>
J]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]

= E
[
det
(
E[AI,J]+ BI,J

)]
= det

(
E[AI,J + BI,J]

)

24 / 37

Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J)
]

= E
[
det(AI,J) + v>J adj(AI,J)uI

]
= det

(
E[AI,J]

)
+ v>J adj

(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv

>
J]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]

= E
[
det
(
E[AI,J]+ BI,J

)]
= det

(
E[AI,J + BI,J]

)

24 / 37

Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J)
]

= E
[
det(AI,J) + v>J adj(AI,J)uI

]
= det

(
E[AI,J]

)
+ v>J adj

(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv

>
J]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]

= E
[
det
(
E[AI,J]+ BI,J

)]
= det

(
E[AI,J + BI,J]

)

24 / 37

Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J)
]

= E
[
det(AI,J) + v>J adj(AI,J)uI

]
= det

(
E[AI,J]

)
+ v>J adj

(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv

>
J]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]

= E
[
det
(
E[AI,J]+ BI,J

)]
= det

(
E[AI,J + BI,J]

)

24 / 37

Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J)
]

= E
[
det(AI,J) + v>J adj(AI,J)uI

]
= det

(
E[AI,J]

)
+ v>J adj

(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv

>
J]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]

= E
[
det
(
E[AI,J]+ BI,J

)]
= det

(
E[AI,J + BI,J]

)

24 / 37

Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J)
]

= E
[
det(AI,J) + v>J adj(AI,J)uI

]
= det

(
E[AI,J]

)
+ v>J adj

(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv

>
J]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]
= E

[
det
(
E[AI,J]+ BI,J

)]

= det
(
E[AI,J + BI,J]

)

24 / 37

Proof of closure under addition

First show that A + uv> is d.p. for fixed u, v ∈ Rd :

E
[
det(AI,J + uIv

>
J)
]

= E
[
det(AI,J) + v>J adj(AI,J)uI

]
= det

(
E[AI,J]

)
+ v>J adj

(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv

>
J]
)
.

Iterating this, we get A + Z is d.p. for any fixed Z

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]
= E

[
det
(
E[AI,J]+ BI,J

)]
= det

(
E[AI,J + BI,J]

)

24 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}

For each i ∈ [n], matrix bixix
>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

�
E[adj(X>

S̄
XS̄)]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

�
E[adj(X>

S̄
XS̄)]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

�
E[adj(X>

S̄
XS̄)]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Application: Expected inverse

Theorem

Let Pr(S) ∝ det(X>SXS)p|S |(1− p)n−|S| over all S ⊆ [n]. Then:

E
[
(X>SXS)−1

]
� 1

p (X>X)−1.

Proof Let b1, ..., bn ∼ Bernoulli(p), and define S̄ = {i : bi = 1}
For each i ∈ [n], matrix bixix

>
i is determinant preserving

Therefore, X>
S̄
XS̄ =

∑n
i=1 bixix

>
i is determinant preserving

E
[
(X>SXS)−1

]
=

E[det(X>
S̄
XS̄)(X>

S̄
XS̄)†]

E[det(X>
S̄
XS̄)]

�
E[adj(X>

S̄
XS̄)]

E[det(X>
S̄
XS̄)]

=
adj(E[X>

S̄
XS̄])

det(E[X>
S̄
XS̄])

=
(
E[X>

S̄
XS̄]
)−1

= (pX>X)−1

25 / 37

Outline

Introduction

Determinantal point processes

DPPs in Randomized Linear Algebra

Key technique: Determinant preserving random matrices

Sampling algorithms

Conclusions

26 / 37

Algorithmic challenges with sampling from DPPs

Task:

(variant 1) Given L, sample S ∼ DPP(L)

(variant 2) Given L and k, sample S ∼ k-DPP(L)

(Task B: we are given n× d matrix X ∈ Rd instead of L = XX>)

Challenges:

1. Expensive preprocessing

typically involves eigendecomposition of L in O(n3) time

2. Sampling time scales with n rather than with |S | � n

undesirable when we need many samples S1,S2, · · · ∼ DPP(L)

3. Trade-offs between accuracy and runtime
I exact algorithms - often too expensive

I approximate algorithms - difficult to evaluate accuracy

27 / 37

Algorithmic challenges with sampling from DPPs

Task:

(variant 1) Given L, sample S ∼ DPP(L)

(variant 2) Given L and k, sample S ∼ k-DPP(L)

(Task B: we are given n× d matrix X ∈ Rd instead of L = XX>)

Challenges:

1. Expensive preprocessing

typically involves eigendecomposition of L in O(n3) time

2. Sampling time scales with n rather than with |S | � n

undesirable when we need many samples S1,S2, · · · ∼ DPP(L)

3. Trade-offs between accuracy and runtime
I exact algorithms - often too expensive

I approximate algorithms - difficult to evaluate accuracy

27 / 37

Algorithmic challenges with sampling from DPPs

Task:

(variant 1) Given L, sample S ∼ DPP(L)

(variant 2) Given L and k, sample S ∼ k-DPP(L)

(Task B: we are given n× d matrix X ∈ Rd instead of L = XX>)

Challenges:

1. Expensive preprocessing

typically involves eigendecomposition of L in O(n3) time

2. Sampling time scales with n rather than with |S | � n

undesirable when we need many samples S1,S2, · · · ∼ DPP(L)

3. Trade-offs between accuracy and runtime
I exact algorithms - often too expensive

I approximate algorithms - difficult to evaluate accuracy

27 / 37

Algorithmic challenges with sampling from DPPs

Task:

(variant 1) Given L, sample S ∼ DPP(L)

(variant 2) Given L and k, sample S ∼ k-DPP(L)

(Task B: we are given n× d matrix X ∈ Rd instead of L = XX>)

Challenges:

1. Expensive preprocessing

typically involves eigendecomposition of L in O(n3) time

2. Sampling time scales with n rather than with |S | � n

undesirable when we need many samples S1,S2, · · · ∼ DPP(L)

3. Trade-offs between accuracy and runtime
I exact algorithms - often too expensive

I approximate algorithms - difficult to evaluate accuracy

27 / 37

Algorithmic challenges with sampling from DPPs

Task:

(variant 1) Given L, sample S ∼ DPP(L)

(variant 2) Given L and k, sample S ∼ k-DPP(L)

(Task B: we are given n× d matrix X ∈ Rd instead of L = XX>)

Challenges:

1. Expensive preprocessing

typically involves eigendecomposition of L in O(n3) time

2. Sampling time scales with n rather than with |S | � n

undesirable when we need many samples S1,S2, · · · ∼ DPP(L)

3. Trade-offs between accuracy and runtime
I exact algorithms - often too expensive

I approximate algorithms - difficult to evaluate accuracy
27 / 37

Exact DPP sampling

Key result: any DPP is a mixture of Projection DPPs [HKP+06]

I Eigendecomposition O(n3)
needed only once for a given kernel

I Reduction to a projection DPP O(n |S |2)
needed for every sample

I Cost of first sample S1 ∼ DPP(L): O(n3)

I Cost of next sample S2 ∼ DPP(L): O(nk2) (k = E[|S |])

Extends to a k-DPP sampler [KT11]

28 / 37

Exact DPP sampling

Key result: any DPP is a mixture of Projection DPPs [HKP+06]

I Eigendecomposition O(n3)
needed only once for a given kernel

I Reduction to a projection DPP O(n |S |2)
needed for every sample

I Cost of first sample S1 ∼ DPP(L): O(n3)

I Cost of next sample S2 ∼ DPP(L): O(nk2) (k = E[|S |])

Extends to a k-DPP sampler [KT11]

28 / 37

Exact DPP sampling

Key result: any DPP is a mixture of Projection DPPs [HKP+06]

I Eigendecomposition O(n3)
needed only once for a given kernel

I Reduction to a projection DPP O(n |S |2)
needed for every sample

I Cost of first sample S1 ∼ DPP(L): O(n3)

I Cost of next sample S2 ∼ DPP(L): O(nk2) (k = E[|S |])

Extends to a k-DPP sampler [KT11]

28 / 37

Exact DPP sampling

Key result: any DPP is a mixture of Projection DPPs [HKP+06]

I Eigendecomposition O(n3)
needed only once for a given kernel

I Reduction to a projection DPP O(n |S |2)
needed for every sample

I Cost of first sample S1 ∼ DPP(L): O(n3)

I Cost of next sample S2 ∼ DPP(L): O(nk2) (k = E[|S |])

Extends to a k-DPP sampler [KT11]

28 / 37

Exact DPP sampling

Key result: any DPP is a mixture of Projection DPPs [HKP+06]

I Eigendecomposition O(n3)
needed only once for a given kernel

I Reduction to a projection DPP O(n |S |2)
needed for every sample

I Cost of first sample S1 ∼ DPP(L): O(n3)

I Cost of next sample S2 ∼ DPP(L): O(nk2) (k = E[|S |])

Extends to a k-DPP sampler [KT11]

28 / 37

Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j)
det(LS)

}
4. ...

Converges in O(nk log 1
ε) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]

29 / 37

Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j)
det(LS)

}
4. ...

Converges in O(nk log 1
ε) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]

29 / 37

Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j)
det(LS)

}

4. ...

Converges in O(nk log 1
ε) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]

29 / 37

Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j)
det(LS)

}
4. ...

Converges in O(nk log 1
ε) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]

29 / 37

Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j)
det(LS)

}
4. ...

Converges in O(nk log 1
ε) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]

29 / 37

Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j)
det(LS)

}
4. ...

Converges in O(nk log 1
ε) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]

29 / 37

Approximate k-DPP sampler using MCMC

1. Start from some state S ⊆ [n] of size k

2. Uniformly sample i ∈ S and j 6∈ S

3. Move to state S − i + j with probability 1
2 min

{
1,

det(LS−i+j)
det(LS)

}
4. ...

Converges in O(nk log 1
ε) steps to within ε total variation [AGR16]

I Cost of first sample S1 ∼ k-DPP(L): O(n · poly(k))

I Cost of next sample S2 ∼ k-DPP(L): O(n · poly(k))

Extends to an O(n2 · poly(k)) sampler for DPP(L) [LJS16]

29 / 37

Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37

Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37

Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37

Distortion-free intermediate sampling

1. Draw an intermediate sample:

σ = (σ1, . . . , σt)

2. Downsample: S ⊆ [t]

3. Return: {σi : i ∈ S}

{1..n}

(2)

S

(1)
σ

What is the right intermediate sampling distribution for σ?

I Leverage scores, when S is a Projection DPP

I Ridge leverage scores, when S is an L-ensemble

30 / 37

Distortion-free intermediate sampling for L-ensembles

Theorem ([DCV19])

There is an algorithm which, given access to L, returns

1. first sample S1 ∼ DPP(L) in: n · poly(k)polylog(n) time,

2. next sample S2 ∼ DPP(L) in: poly(k) time.

I Exact sampling

I Cost of first sample is sublinear in the size of L

I Cost of next sample is independent of the size of L

31 / 37

Distortion-free intermediate sampling for L-ensembles

Theorem ([DCV19])

There is an algorithm which, given access to L, returns

1. first sample S1 ∼ DPP(L) in: n · poly(k)polylog(n) time,

2. next sample S2 ∼ DPP(L) in: poly(k) time.

I Exact sampling

I Cost of first sample is sublinear in the size of L

I Cost of next sample is independent of the size of L

31 / 37

Distortion-free intermediate sampling for L-ensembles

Theorem ([DCV19])

There is an algorithm which, given access to L, returns

1. first sample S1 ∼ DPP(L) in: n · poly(k)polylog(n) time,

2. next sample S2 ∼ DPP(L) in: poly(k) time.

I Exact sampling

I Cost of first sample is sublinear in the size of L

I Cost of next sample is independent of the size of L

31 / 37

Distortion-free intermediate sampling for L-ensembles

Theorem ([DCV19])

There is an algorithm which, given access to L, returns

1. first sample S1 ∼ DPP(L) in: n · poly(k)polylog(n) time,

2. next sample S2 ∼ DPP(L) in: poly(k) time.

I Exact sampling

I Cost of first sample is sublinear in the size of L

I Cost of next sample is independent of the size of L

31 / 37

Outline

Introduction

Determinantal point processes

DPPs in Randomized Linear Algebra

Key technique: Determinant preserving random matrices

Sampling algorithms

Conclusions

32 / 37

Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37

Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37

Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37

Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37

Conclusions

1. New fundamental connections between:

1.1 Determinantal Point Processes

1.2 Randomized Linear Algebra

2. New unbiased estimators and expectation formulas

3. Efficient sampling algorithms

4. Determinant preserving random matrices

DPP-related topics we did not cover:
I Column Subset Selection Problem
I Nyström method
I Monte Carlo integration
I Distributed/Stochastic optimization
I ...

33 / 37

References I

Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei.

Monte carlo markov chain algorithms for sampling strongly rayleigh distributions and determinantal point

processes.

In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learning

Theory, volume 49 of Proceedings of Machine Learning Research, pages 103–115, Columbia University, New

York, New York, USA, 23–26 Jun 2016. PMLR.

Micha l Dereziński, Daniele Calandriello, and Michal Valko.

Exact sampling of determinantal point processes with sublinear time preprocessing.

In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, editors, Advances in

Neural Information Processing Systems 32, pages 11542–11554. Curran Associates, Inc., 2019.

Micha l Dereziński.

Fast determinantal point processes via distortion-free intermediate sampling.

In Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on Learning

Theory, volume 99 of Proceedings of Machine Learning Research, pages 1029–1049, Phoenix, USA, 25–28

Jun 2019.

Micha l Dereziński, Rajiv Khanna, and Michael W Mahoney.

Improved guarantees and a multiple-descent curve for the column subset selection problem and the nyström

method.

arXiv preprint arXiv:2002.09073, 2020.

34 / 37

References II

Micha l Dereziński, Feynman Liang, and Michael W. Mahoney.

Exact expressions for double descent and implicit regularization via surrogate random design.

arXiv e-prints, page arXiv:1912.04533, Dec 2019.

Micha l Dereziński and Michael W Mahoney.

Distributed estimation of the inverse hessian by determinantal averaging.

In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, editors, Advances in

Neural Information Processing Systems 32, pages 11401–11411. Curran Associates, Inc., 2019.

Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang.

Matrix approximation and projective clustering via volume sampling.

In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pages

1117–1126, Miami, FL, USA, January 2006.

Micha l Dereziński and Manfred K. Warmuth.

Unbiased estimates for linear regression via volume sampling.

In Advances in Neural Information Processing Systems 30, pages 3087–3096, Long Beach, CA, USA, 2017.

Micha l Dereziński, Manfred K. Warmuth, and Daniel Hsu.

Leveraged volume sampling for linear regression.

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in

Neural Information Processing Systems 31, pages 2510–2519. Curran Associates, Inc., 2018.

35 / 37

References III

Venkatesan Guruswami and Ali K. Sinop.

Optimal column-based low-rank matrix reconstruction.

In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1207–1214, Kyoto, Japan, January 2012.

J. Ben Hough, Manjunath Krishnapur, Yuval Peres, Bálint Virág, et al.

Determinantal processes and independence.

Probability surveys, 3:206–229, 2006.

Alex Kulesza and Ben Taskar.

k-DPPs: Fixed-Size Determinantal Point Processes.

In Proceedings of the 28th International Conference on Machine Learning, pages 1193–1200, June 2011.

Alex Kulesza and Ben Taskar.

Determinantal Point Processes for Machine Learning.

Now Publishers Inc., Hanover, MA, USA, 2012.

Chengtao Li, Stefanie Jegelka, and Suvrit Sra.

Fast mixing markov chains for strongly Rayleigh measures, DPPs, and constrained sampling.

In Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16,

pages 4195–4203, 2016.

Mojḿır Mutný, Micha l Dereziński, and Andreas Krause.

Convergence analysis of the randomized newton method with determinantal sampling.

arXiv e-prints, page arXiv:1910.11561, Oct 2019.

36 / 37

Thank you!

37 / 37

	Introduction
	Determinantal point processes
	DPPs in Randomized Linear Algebra
	Key technique: Determinant preserving random matrices
	Sampling algorithms
	Conclusions

