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Approximate Matrix Multiplication

Algorithm 1 Approximate Matrix Multiplication via Sampling

Input: An n × d matrix A and an d × p matrix B, an integer m
and probabilities {pk}dk=1

Output: Matrices CR such that CR ≈ AB

1: for t = 1 to m do
2: Pick it ∈ {1, ..., d} with probability P[it = k] = pk in i.i.d.

with replacement
3: Set C (t) = 1√

mpit
A(it) and R(t) = 1√

mpit
B(it)

4: end for

I We can multiply CR using the classical algorithm

I Complexity O(nmp)



AMM mean and variance
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1
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I Mean and variance of the matrix multiplication estimator
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Optimal sampling probabilities

I Nonuniform sampling

pk =
‖A(k)‖2‖B(k)‖2∑
i ‖A(k)‖2‖B(k)‖2

I minimizes E‖AB − CR‖F
I E‖AB − CR‖2F = 1
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is the optimal error



Final Probability Bound for `2-norm sampling

I For any δ > 0, set m = 1
δ ε2

to obtain

P [‖AB − CR‖F > ε‖A‖F‖B‖F ] ≤ δ (1)

I i.e., ‖AB − CR‖F < ε‖A‖F‖B‖F with probability 1− δ
I note that m is independent of any dimensions



Numerical simulations for AMM

I Approximating ATA

a subset of the CIFAR dataset
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Numerical simulations for AMM

I Approximating ATA

sparse matrix from a computational fluid dynamics model
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SuiteSparse Matrix Collection: https://sparse.tamu.edu

https://sparse.tamu.edu


Sampling with replacement vs without replacement

SuiteSparse Matrix Collection: https://sparse.tamu.edu

Plancher et. al. Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM,2019.

https://sparse.tamu.edu


Applications of Approximate Matrix Multiplication
I Simultaneous Localization and Mapping (SLAM)

Plancher et. al. Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM,2019.
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Neural Networks

I Given image x

I Classify into M classes

I Neural network f (x) = WL(...s(W2(s(W1x))))

I W1,..., WL are trained weight matrices

LeCun et al. (1998)



Neural Networks

LeCun et al. (1998)



AMM for neural networks

Plancher et. al. Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM,2019.



Probing the actual error

I AB ≈ CR

I ∆ , AB − CR

I How large is the error ‖∆‖F ?

I ‖∆‖2F = tr
(
∆T∆

)
I trace of a matrix B

I trB
)
,
∑

i Bii

I trace estimation



Trace estimation

I Let B an n × n symmetric matrix

I Let u1, ..., un be n i.i.d. samples of a random variable U with
mean zero and variance σ2

I Lemma

E[uTBu] = σ2tr(B)

Var[uTBu] = 2σ4
∑

i 6=j B
2
ij +

(
E[U4]− σ4

)∑
i B

2
ii



Trace estimation: optimal sampling distribution

I Let B an n × n symmetric matrix

I Let u1, ..., un be n i.i.d. samples of a random variable U with
mean zero and variance σ2

E[uTBu] = σ2tr(B)

Var[uTBu] = 2σ4
∑

i 6=j B
2
ij +

(
E[U4]− σ4

)∑
i B

2
ii

I minimum variance unbiased estimator

min
p(U)

Var[uTBu]

subject to E[uTBu] = tr(B)

I Var(U2) = E[U4]− σ4 ≥ 0

I minimized when Var(U2) = 0

I U2 = 1 with probability one
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Optimal trace estimation

I Let B be an n × n symmetric matrix with non-zero trace

Let U be the discrete random variable which takes values
1,−1 each with probability 1

2 (Rademacher distribution)

Let u = [u1, ..., un]T be i.i.d. ∼ U

I uTBu is an unbiased estimator tr(B) and

Var[uTBu] = 2
∑
i 6=j

B2
ij .

I U is the unique variable amongst zero mean random variables
for which uTBu is a minimum variance, unbiased estimator of
tr(B).

Hutchinson (1990)



Application to Approximate Matrix Multiplication

I ‖AB − CR‖2F = tr
(
(AB − CR)T (AB − CR)

)
I can be estimated via

I uT (AB − CR)T (AB − CR)u = ‖(AB − CR)u‖22
I only requires matrix-vector products

where u = [u1, ..., un]T is i.i.d. ±1 each with probability 1
2

I variance can be reduced by averaging independent trials



Sampling/Sketching Matrix Formalism

I Define the sampling matrix

Ŝij =

{
1 if the i-th column of A is chosen in the j-th trial

0 otherwise

I diagonal re-weighting matrix

Dtt =
1

√
mpit

I AB ≈ CR

C = AŜD and R = DŜTB

I let S = DŜT

CR = AŜDDŜTB = ASTSB
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Estimating the entry-wise error

I infinity norm error

I ε(S) , ‖ASTSB − AB‖∞ = maxij |(ASTSB)ij − (AB)ij |
I 0.99-quantile of ε(S) is the tightest upper bound that holds

with probability at least 0.99
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Estimating the entry-wise error

I infinity norm error

I ε(S) , ‖ASTSB − AB‖∞ = maxij |(ASTSB)ij − (AB)ij |
I 0.99-quantile of ε(S) is the tightest upper bound that holds

with probability at least 0.99

I Bootstrap procedure:

For b = 1, ...,B do

sample m numbers with replacement from {1, ...,m}
form Sb by selecting the the respective rows of S

compute ε̂b = ‖AST
b SbB − ASTSB‖∞

return 0.99-quantile of the values ε̂1, ..., ε̂B

e.g., sort in increasing order and return b0.99Bc-th value

I imitates the random mechanism that originally generated
ASTSB

A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication. Lopes et al.



Extrapolating the error

I ε(S) , ‖ASTSB − AB‖∞
I for sufficiently large m

I 0.99-quantile of ε(S) ≈ κ√
m

where κ is an unknown number

I given initial sketch of size m0

we can extrapolate the error for m > m0 via the Bootstrap
estimate as

√
m0√
m
ε̂(S)



Extrapolation: Numerical example

I Protein dataset (n = 17766, d = 356)
The black line is the 0.99-quantile as a function of m. The
blue star is the average bootstrap estimate at the initial
sketch size m0 = 500, and the blue line represents the average
extrapolated estimate derived from the starting value m0.
A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication. Lopes et al.



Questions?


