EE270
Large scale matrix computation,
optimization and learning

Instructor : Mert Pilanci

Stanford University

Thursday, Jan 14 2020
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Trace Estimation and Bootstrap



Approximate Matrix Multiplication

Algorithm 1 Approximate Matrix Multiplication via Sampling
Input: An n x d matrix A and an d x p matrix B, an integer m
and probabilities {px}¢_;

Output: Matrices CR such that CR R~ AB
1: fort =1to mdo
2:  Pick iy € {1,...,d} with probability P[i = k] = px in i.i.d.
with replacement
_ 1 it _ 1
3 Set C() = \/?PQA( ) and Ry = \/mTJitB("f)
4. end for

> We can multiply CR using the classical algorithm
» Complexity O(nmp)



AMM mean and variance

AB~CR=—Y —Alp,
m Z plt (It)

» Mean and variance of the matrix multiplication estimator
Lemma
> E[(CR)j] = (AB);
A2 B2
> Var[(CR)j] = £ 34, o — L(AB):
> E|AB — CR||? _Z E(AB — CR) ZUVar[(CR),-j]

> BE
= % Zk:l M - %HABH%

Pk

= L3 LIARB) B3 — LIABI2



Optimal sampling probabilities

» Nonuniform sampling
= 1A% 2/BM ]2
i AW 2]|BW||2
» minimizes E||AB — CR||r
> E||AB - CRIIE = & 351 o AW311Bw I3 — %1 ABIIE

2
d
= <Zk:1 HA(k)HZHB(k)H2> — 1AB|2
is the optimal error




Final Probability Bound for £,-norm sampling

» For any § > 0, set m= ﬁ to obtain

P[|AB — CR||r > €||AllFIIBllF] < 6

> ie., ||[AB — CR||r < €||A|f||B| f with probability 1 — §

P note that m is independent of any dimensions



Numerical simulations for AMM

» Approximating AT A
a subset of the CIFAR dataset
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Numerical simulations for AMM

» Approximating AT A

sparse matrix from a computational fluid dynamics model
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SuiteSparse Matrix Collection: https://sparse.tamu.edu


https://sparse.tamu.edu

Sampling with replacement vs without replacement
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SuiteSparse Matrix Collection: https://sparse.tamu.edu

Plancher et. al. Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM,2019.


https://sparse.tamu.edu

Applications of Approximate Matrix Multiplication
» Simultaneous Localization and Mapping (SLAM)

The task of SLAM
Given a Robaot with sensor set, at the same time: """ i
« Construct a model (the Map) of the ‘d
environment. "'

« Eslimate the State of the robot (pose,
velacity, etc.) in the Map

SLAM s chicken-or-egg problem. X% o -




Applications of Approximate Matrix Multiplication

Algorithm 1 DSLAM
1: Xo, X0 < Xinit, Zinit
2. fori=1...T do
3: X1 = f( X1, Up)

4 F= Of(Xe—1,Ur) Motion
' = Update
50 Sy = FRa FT+Q P
6y =h(X;1)
7: yt\t—la}:(h(X;\t—l)
V(X1
zf g: H%X"l HT + R Measurement
i te-1 t Update

10: K =%, 1HTS™!

11 Xi = Xypo1 + K(ye — Yeje—1)
12: ¥ = (I — KH)Eﬂtfl

13: end for

Plancher et. al. Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM,2019.



Applications of Approximate Matrix Multiplication
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Fig. 6. Error in position estimations over time averaged over 10 trials for
DSLAM under various levels of approximation.

Plancher et. al. Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM,2019.



Neural Networks

> Given image x

» Classify into M classes

» Neural network f(x) = Wy (...s(Wa(s(Wix))))
> Wi,..., W, are trained weight matrices
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LeCun et al. (1998)
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LeCun et al. (1998)



AMM for neural networks

MNIST-FC MNIST-CNN
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Fig. 3. Average image classification error for Fully-Connected (MNIST-FC,
left) and Convolutional (MNIST-CNN, right) NN layers and corresponding
rate of sampling. To maintain 97% classification accuracy, only the first
layer in MNIST-FC should be approximated (sample rate 76%), while both
convolutional layers of MNIST-CNN can be approximated (sample rate 82%).

Plancher et. al. Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM,2019.



Probing the actual error

AB ~ CR

A2 AB—CR

How large is the error | Al ?
A2 = tr (ATA)

trace of a matrix B

trB) £, Bji

trace estimation

vVvvyVvYvVvyyy



Trace estimation

> Let B an n X n symmetric matrix

> Let u,...,u, be ni.i.d. samples of a random variable U with
mean zero and variance o2

> Lemma
E[uT Bu] = o?tr(B)

Var[u” Bu] = 20* Y, ; Bf + (E[U*] — 0*) =, Bj



Trace estimation: optimal sampling distribution

> Let B an n X n symmetric matrix
» Let u,...,u, be ni.i.d. samples of a random variable U with
mean zero and variance o2
E[uT Bu] = o°tr(B)
» minimum variance unbiased estimator
min Var[u” Bu]
p(V)
subject to E[u” Bu] = tr(B)



Trace estimation: optimal sampling distribution

> Let B an n X n symmetric matrix

» Let u,...,u, be ni.i.d. samples of a random variable U with
mean zero and variance o2

E[uT Bu] = o°tr(B)
Var[uTBu] =20% ZI# 85 + (IE[U4] — 04) > Bﬁ
» minimum variance unbiased estimator
min Var[u” Bu]
p(U)
subject to E[u” Bu] = tr(B)

> Var(U?) =E[U* —0o* >0
minimized when Var(U?) =0

» U? =1 with probability one

v



Optimal trace estimation

> Let B be an n X n symmetric matrix with non-zero trace

Let U be the discrete random variable which takes values
1, —1 each with probability 3 (Rademacher distribution)

Let u=[u,...,us]" beiid. ~ U

» u' Bu is an unbiased estimator tr(B) and

Var[u"Bu] =2 Bj.
i#j
» U is the unique variable amongst zero mean random variables
for which u” Bu is a minimum variance, unbiased estimator of
tr(B).
Hutchinson (1990)



Application to Approximate Matrix Multiplication

> ||AB — CR||z = tr((AB — CR)T(AB — CR))
P can be estimated via
» u"(AB — CR)T(AB — CR)u = ||(AB — CR)ul|3
» only requires matrix-vector products
where u = [us, ..., up] T is i.i.d. &1 each with probability %
P variance can be reduced by averaging independent trials



Sampling/Sketching Matrix Formalism

» Define the sampling matrix

A {1 if the i-th column of A is chosen in the j-th trial
=

0 otherwise

» diagonal re-weighting matrix




Sampling/Sketching Matrix Formalism

» Define the sampling matrix

& J1 if the i-th column of A is chosen in the j-th trial
/ 0 otherwise

» diagonal re-weighting matrix

1
Dtt —
v/ MPi;
> AB ~ CR
C=ASD and R=DSTB
> let S =DST

CR = ASDDSTB = ASTSB



Estimating the entry-wise error

» infinity norm error

> £(S) £ ||[ASTSB — AB|| = max;; |(ASTSB); — (AB)jj|

» 0.99-quantile of £(S) is the tightest upper bound that holds
with probability at least 0.99



Estimating the entry-wise error

» infinity norm error

> £(S) £ ||[ASTSB — AB|| = max;; |(ASTSB); — (AB)jj|

» 0.99-quantile of £(S) is the tightest upper bound that holds
with probability at least 0.99
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Estimating the entry-wise error

» infinity norm error
> £(S) £ ||[ASTSB — AB||o = max;; [(ASTSB);; — (AB)]
» 0.99-quantile of £(S) is the tightest upper bound that holds
with probability at least 0.99
» Bootstrap procedure:
For b=1,...,B do
sample m numbers with replacement from {1,..., m}
form S;, by selecting the the respective rows of S
compute &, = ||AS] SpB — AST SB||
return 0.99-quantile of the values &1, ...,ég
e.g., sort in increasing order and return [0.99B|-th value
P imitates the random mechanism that originally generated
ASTSB

A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication. Lopes et al.



Extrapolating the error
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> 2(S) £ ||ASTSB — AB||

> for sufficiently large m

» 0.99-quantile of £(S) ~ ﬁ
where x is an unknown number

> given initial sketch of size mg
we can extrapolate the error for m > mg via the Bootstrap
estimate as



Extrapolation: Numerical example
Sampling

L., Norm Error
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» Protein dataset (n = 17766, d = 356)
The black line is the 0.99-quantile as a function of m. The
blue star is the average bootstrap estimate at the initial
sketch size mg = 500, and the blue line represents the average
extrapolated estimate derived from the starting value myg.

A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication."Lopes et al.



Questions?



