EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Thursday, Jan 16 2020

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Randomized Linear Algebra Lecture 4: Approximate Tensor Products, Randomized Verification and Concentration **Inequalities**

Tensors and tensor multiplication

- \blacktriangleright A tensor is a multidimensional array
- \triangleright Order of a tensor: number of dimensions, also known as modes
- An element (i, j, k) of a third-order tensor X is denoted by $X_{i,j,k}$

$$
\blacktriangleright
$$
 (Frobenious) norm of a tensor

$$
||X||_F = \sqrt{\sum_{i_1=1}^{l_1} \sum_{i_2=1}^{l_2} \dots \sum_{i_N=1}^{l_N} |X_{i_1 i_2 \dots i_N}|^2}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Tensors and tensor multiplication

 \triangleright Deep Neural Network weights and activations are typically tensors

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Tensors and tensor multiplication

- \blacktriangleright Fibers are the higher-order analogue of matrix rows and columns. Defined by fixing every index but one
- \triangleright Slices are two-dimensional sections of a tensor, defined by fixing all but two indices

KORKARYKERKER POLO

D n-mode (matrix) product of a tensor $A \in \mathbb{R}^{d_1 \times d_2 \times \dots \times d_N}$ with a matrix $B \in \mathbb{R}^{p \times d_n}$ is elementwise

$$
(A \times_{n} B)_{i_{1}, \cdots, i_{n-1} j i_{n+1} \cdots i_{N}} = \sum_{i_{n}=1}^{d_{n}} A_{i_{1} i_{2} \cdots i_{n} \cdots i_{N}} B_{j i_{n}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

ighthroate each mode-n fiber of A is multiplied by the matrix B

Approximate Tensor Multiplication

Algorithm 1 Approximate Tensor n-Mode Product via Sampling **Input:** An $d_1 \times \cdots \times d_n \times \cdots \times d_M$ dimensional tensor A and an $\rho \times d_n$ dimensional tensor B, an integer m and probabilities $\left\{ \rho_k \right\}_{k=1}^{d_n}$ **Output:** Tensors *CR* such that $CR \approx AB$

- 1: for $t = 1$ to m do
- 2: Pick $i_t \in \{1, ..., d_n\}$ with probability $\mathbb{P}[i_t = k] = p_k$ in i.i.d. with replacement

KORKAR KERKER SAGA

3: Set
$$
C^{(t)} = \frac{1}{\sqrt{m p_{i_t}}} A_{:, i_t,:}
$$
 and $R_{(t)} = \frac{1}{\sqrt{m p_{i_t}}} B_{:, i_t,:}$

4: end for

- \triangleright We can multiply CR using the classical algorithm
- \triangleright Complexity $O(d_1 \cdots d_{n-1} md_n \cdots d_N p)$

Approximate Tensor Multiplication: Mean and variance

$$
M_{\vec{i}j} \triangleq (A \times_n B)_{i_1, \cdots, i_{n-1}j} i_{n+1} \cdots i_N = \sum_{i_n=1}^{d_n} A_{i_1 i_2 \cdots i_n \cdots i_N} B_{j i_n}
$$

$$
\hat{M}_{\vec{i}j} \triangleq \sum_{i_n=1}^m \frac{1}{p_{i_n}} A_{i_1 i_2 \cdots i_n \cdots i_N} B_{j i_n}
$$

 \blacktriangleright Mean and variance of the matrix multiplication estimator

KO K K Ø K K E K K E K V K K K K K K K K K

Lemma

$$
\triangleright \mathbb{E} \left[\hat{M}_{\vec{i}j} \right] = M_{\vec{i}j}
$$
\n
$$
\triangleright \text{Var} \left[\hat{M}_{\vec{i}j} \right] = \frac{1}{m} \sum_{i_n=1}^{d_n} \frac{1}{p_{i_n}} A_{i_1 i_2 \cdots i_n \cdots i_N}^2 B_{j i_n}^2 - \frac{1}{m} (M_{\vec{i}j})^2
$$

Approximate Tensor Multiplication: Mean and variance

$$
M_{\vec{i}j} \triangleq (A \times_n B)_{i_1, \cdots, i_{n-1}j} i_{n+1} \cdots i_N = \sum_{i_n=1}^{d_n} A_{i_1 i_2 \cdots i_n \cdots i_N} B_{j i_n}
$$

$$
\hat{M}_{\vec{i}j} \triangleq \sum_{i_n=1}^m \frac{1}{p_{i_n}} A_{i_1 i_2 \cdots i_n \cdots i_N} B_{j i_n}
$$

 \blacktriangleright Mean and variance of the matrix multiplication estimator

Lemma $\blacktriangleright \; \mathbb{E}\left[\hat{M}_{\vec{i}j}\right]=M_{\vec{i}j}$ \blacktriangleright Var $\left[\hat{M}_{\vec{i}\vec{j}}\right]=\frac{1}{n}$ $\frac{1}{m}\sum_{i_n=1}^{d_n} \frac{1}{p_i}$ $\frac{1}{p_{i_n}} A^2_{i_1 i_2 \cdots i_n \cdots i_N} B^2_{j i_n} - \frac{1}{n}$ $\frac{1}{m}(M_{\vec{i}\vec{j}})^2$ \blacktriangleright minimize ${}_{p}\mathbb{E}\|\hat{M}-M\|_{F}^{2}=\sum_{\vec{ij}}\mathsf{Var}\left[\hat{M}_{\vec{ij}}\right]$

Approximate Multiplication for Tensors

$$
\hat{M}_{\vec{i}j} \triangleq \sum_{i_n=1}^m \frac{1}{p_{i_n}} A_{i_1 i_2 \cdots i_n \cdots i_N} B_{j i_n}
$$

\blacktriangleright Importance sampling distribution

$$
p_k = \frac{\|A_{\dots k \dots \cdot}\|_F \|B_{:k}\|_F}{\sum_k \|A_{\dots k \dots \cdot}\|_F \|B_{:k}\|_F}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Verifying Matrix Multiplication

$$
\blacktriangleright
$$
 Given three $n \times n$ matrices A, B, M

 \blacktriangleright verify whether

$$
AB=M
$$

Naive method: $O(n^3)$

Randomized Algorithm for Verifying Matrix Multiplication

KORKARYKERKER POLO

- Sample a random vector $r = [r_1, ..., r_n]^T$
- \triangleright Compute ABr by first computing Br and then $A(Br)$
- \blacktriangleright Compute Mr
- If $A(Br) \neq Mr$, then $AB \neq M$
- \triangleright Otherwise, return $AB = M$

Randomized Algorithm for Verifying Matrix Multiplication

- Sample a random vector $r = [r_1, ..., r_n]^T$
- \triangleright Compute ABr by first computing Br and then $A(Br)$
- \blacktriangleright Compute Mr
- If $A(Br) \neq Mr$, then $AB \neq M$
- \triangleright Otherwise, return $AB = M$
- Complexity: three matrix-vector multiplications $O(n^2)$ Freivalds' Algorithm (1977)

KELK KØLK VELKEN EL 1990

Failure Probability

\n- Let
$$
r = [r_1, ..., r_n]^T
$$
 be i.i.d. $+1, -1$ each with probability $\frac{1}{2}$
\n- Lemma $\mathbb{P}[ABr = Mr] \leq \frac{1}{2}$
\n

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

Multiple trials

 \blacktriangleright $r = [r_1, ..., r_n]^T$ be i.i.d. 0, 1 each with probability $\frac{1}{2}$ also works

KORKAR KERKER SAGA

 \blacktriangleright To improve the error probability, we run the algorithm independently k times with

 $r_1, ..., r_k \in \mathbb{R}^n$ i.i.d.

If we ever find an r_k such that

 $ABr_k \neq Mr$

In the algorithm correctly returns $AB \neq M$

Multiple trials

 \blacktriangleright $r = [r_1, ..., r_n]^T$ be i.i.d. 0, 1 each with probability $\frac{1}{2}$ also works

 \blacktriangleright To improve the error probability, we run the algorithm independently k times with

 $r_1, ..., r_k \in \mathbb{R}^n$ i.i.d.

If we ever find an r_k such that

 $ABr_k \neq Mr$

- In the algorithm correctly returns $AB \neq M$
- If we always find $ABr = Mr$, then the error probability is at most $\frac{1}{2^k}$

KORKAR KERKER SAGA

For $k = 25$ we have error probability $\leq 10^{-9}$.

Concentration bounds: Tighter success probability

- In AMM size of the sample is $m = \frac{1}{\delta \epsilon^2}$. dependence on the failure probability δ is not ideal we can do better
- \blacktriangleright recall Markov's Inequality

For $Z > 0$ and $t > 0$

$$
\mathbb{P}\left[Z>a\right]\leq \frac{\mathbb{E}Z}{a}
$$

 \blacktriangleright Chebyshev's inequality

Let X be a random variable with expectation $\mathbb{E}[X]$ and variance $Var[X]$

$$
\mathbb{P}\left[|X-\mathbb{E}[X]|\geq t\right]\leq \frac{\text{Var}(\mathbf{X})}{t^2}
$$

.

KELK KØLK VELKEN EL 1990

Concentration of independent sums

- \blacktriangleright Chernoff Bound¹
- ► Let $X_1, ..., X_m$ be independent random variables $\in [0, 1]$ and let $\mu = \mathbb{E}X_1$

$$
\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^m X_i - \mu\right| > t\mu\right] \leq 2e^{-m\frac{t^2\mu}{3}}
$$

¹ There are other versions of the Chernoff bound which have better con[stan](#page-16-0)t[s](#page-18-0)

Application 1: Monte Carlo Approximations

- **E**stimating π
- Sample $z_1, ..., z_m$ i.i.d. uniform in $[0, 1]^2$
- ► Let $Z_i = 1$ if $||z_i||_2 \leq 1$ and 0 otherwise

$$
\blacktriangleright \mathbb{P}[Z_i = 1] = \frac{\pi}{4}
$$

Application 1: Monte Carlo Approximations

- **E**stimating π
- Sample $z_1, ..., z_m$ i.i.d. uniform in $[0, 1]^2$
- Let $Z_i = 1$ if $||z_i||_2 < 1$ and 0 otherwise
- $\blacktriangleright \mathbb{P}[Z_i = 1] = \frac{\pi}{4}$
- **In Applying Chernoff bound we get**

$$
\left|\frac{1}{m}\sum_{i=1}^m Z_i - \frac{\pi}{4}\right| \leq \epsilon \frac{\pi}{4}
$$

with probability at least $1-2e^{-m\epsilon^2\frac{\pi}{12}}$

ightharpoonup we can pick $m \geq \frac{12}{\pi \epsilon^2} \log \frac{2}{\delta}$ and obtain an estimate $\hat{\pi}$ such that $(1 - \epsilon)\pi \leq \hat{\pi} \leq (1 + \epsilon)\pi$ with probability at least $1 - \delta$ the range $[(1 - \epsilon)\pi,(1 + \epsilon)\pi]$ is a confidence interval

Application 2: Amplifying Probability of Success

If Suppose we have a randomized algorithm which produces an ϵ approximation $|\hat{x} - x^*| \leq \epsilon$ with probability at least 0.9

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Repeat the algorithm m times independently

 \blacktriangleright Take median of *m* outputs

Application 2: Amplifying Probability of Success

- **If** Suppose we have a randomized algorithm which produces an ϵ approximation $|\hat{x} - x^*| \leq \epsilon$ with probability at least 0.9
- Repeat the algorithm m times independently
- \blacktriangleright Take median of m outputs
- ► Let $X_i = 1$ if the *i*-th trial is **good**, i.e., $|\hat{x}_i x^*| \le \epsilon$
- \blacktriangleright Median of the *m* outputs is also **good**, i.e., $|\mathsf{Median}(\hat{x}_i) - x^*| \leq \epsilon$ if at least half of the X_i 's are one
- Chernoff Bound implies that $\left|\frac{1}{n}\right|$ $\frac{1}{m}\sum_{i=1}^{m}X_i-0.9\big|\leq 0.9t$ with probability $1 - e^{-t^2 0.9 m/3}$. Pick $t = 0.4/0.9$

 \blacktriangleright Median is an ϵ approximation with probability at least $1 - e^{-0.059m}$

e.g., for $m = 200$, failure probability is $\leq 7 \times 10^{-6}$.

- \triangleright Chernoff bound implies that majority of estimators are good
- \blacktriangleright The definition of median does not extend to the matrix case in a simple way
- \blacktriangleright Recall AMM final probability bound

For any $\delta > 0$, set $m = \frac{1}{\delta \epsilon^2}$ to obtain

$$
\mathbb{P}\left[\|AB - CR\|_F > \epsilon \|A\|_F \|B\|_F\right] \le \delta
$$

KORK EXTERNE PROVIDE

- ► suppose $||A||_F = ||B||_F = 1$ and let $\epsilon = 0.1$, $\delta = 0.9$
- Repeat independently and obtain $C_1R_1, ..., C_tR_t$ in t independent trials

 $||AB - C_iR_i||_F < 0.1$ with probability 0.9 for each i

Repeat independently and obtain $C_1R_1, ..., C_tR_t$ in t independent trials

 $||AB - C_iR_i||_F < 0.1$ with probability 0.9 for each i

► we don't know which ones are good, i.e., $||AB - C_iR_i||_F < 0.1$

Repeat independently and obtain $C_1R_1, ..., C_tR_t$ in t independent trials

 $||AB - C_iR_i||_F < 0.1$ with probability 0.9 for each i

- ► we don't know which ones are good, i.e., $||AB C_iR_i||_F < 0.1$
- Let $X_i = 1$ if the *i*-th trial is **good** and $X_i = 0$ otherwise
- ► Chernoff Bound implies that $\frac{1}{m}\sum_{i=1}^{m} X_i \geq 0.5$ with probability $1-e^{-0.059m}$, i.e., at least half of the matrices are good

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Repeat independently and obtain $C_1R_1, ..., C_tR_t$ in t independent trials

 $||AB - C_iR_i||_F < 0.1$ with probability 0.9 for each i

- \triangleright we don't know which ones are **good**, i.e., $||AB C_iR_i||_F < 0.1$
- Let $X_i = 1$ if the *i*-th trial is **good** and $X_i = 0$ otherwise
- ► Chernoff Bound implies that $\frac{1}{m}\sum_{i=1}^{m} X_i \geq 0.5$ with probability $1-e^{-0.059m}$, i.e., at least half of the matrices are good

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

- \triangleright Compute $\rho_i \triangleq |\{j \mid j \neq i, \, ||C_iR_i C_iR_i||_F \leq 0.2\}|$
- ► Output $C_k R_k$ such that $\rho_k \leq \frac{t}{2}$ 2
- ► Lemma: $||AB C_kR_k||_F \leq 0.3$ with probability at $\textsf{least1} - e^{-0.059m}.$

Median Trick for Matrices

- \blacktriangleright Proof:
- ► triangle inequality: $||X + Y||_F \le ||X||_F + ||Y||_F$ and
- **►** reverse triangle inequality: $||X + Y||_F > ||X||_F ||Y||_F$

KORK ERKER ADAM ADA

► for matrices $X, Y \in \mathbb{R}^{n \times p}$ imply $\|C_iR_i - C_iR_i\|_F \leq \|C_iR_i - AB\|_F + \|C_iR_i - AB\|_F$ $\|C_iR_i - C_iR_i\|_F > \|C_iR_i - AB\|_F - \|C_iR_i - AB\|_F$

Median Trick for Matrices

 \blacktriangleright Proof:

► triangle inequality: $||X + Y||_F \le ||X||_F + ||Y||_F$ and

► reverse triangle inequality: $||X + Y||_F > ||X||_F - ||Y||_F$

► for matrices
$$
X, Y \in \mathbb{R}^{n \times p}
$$
 imply $||C_iR_i - C_jR_j||_F \leq ||C_iR_i - AB||_F + ||C_jR_j - AB||_F$ $||C_iR_i - C_jR_j||_F \geq ||C_iR_i - AB||_F - ||C_jR_j - AB||_F$

\n- ■ If
$$
C_i R_i
$$
 is **good**, $||AB - C_i R_i||_F \leq 0.1$ then it is close to at least half of the other $C_j R_j$'s
\n- $\rho_i \triangleq |\{j \mid j \neq i, ||C_i R_i - C_j R_j||_F \leq 0.2\}| \geq \frac{1}{2}$ by triangle inequality
\n

KORK ERKER ADAM ADA

Median Trick for Matrices

 \blacktriangleright Proof:

► triangle inequality: $||X + Y||_F < ||X||_F + ||Y||_F$ and

- **►** reverse triangle inequality: $||X + Y||_F > ||X||_F ||Y||_F$
- ► for matrices $X, Y \in \mathbb{R}^{n \times p}$ imply $\|C_iR_i - C_iR_i\|_F \leq \|C_iR_i - AB\|_F + \|C_iR_i - AB\|_F$ $\|C_iR_i - C_iR_i\|_F > \|C_iR_i - AB\|_F - \|C_iR_i - AB\|_F$
- If $C_i R_i$ is good, $||AB C_i R_i||_F \le 0.1$ then it is close to at least half of the other C_jR_j 's $\rho_i \triangleq |\{j \mid j \neq i, \,\, \|C_iR_i - C_jR_j\|_{\scriptstyle{F}} \leq 0.2\}| \geq \frac{t}{2}$ by triangle inequality
- If $C_i R_i$ is **bad**, i.e., $||AB C_i R_i||_F > 0.3$ then $||C_iR_i - C_jR_j||_F \geq 0.2$ by triangle inequality and $\rho_i \leq \frac{t}{2}$ 2

KORKAR KERKER SAGA

Questions?

KOKK@KKEKKEK E 1990