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Tensors and tensor multiplication
I A tensor is a multidimensional array
I Order of a tensor: number of dimensions, also known as

modes
I An element (i , j , k) of a third-order tensor X is denoted by

Xi ,j ,k

I (Frobenious) norm of a tensor

‖X‖F =
√∑I1

i1=1

∑I2
i2=1 ...

∑IN
iN=1 |Xi1i2···iN |2



Tensors and tensor multiplication

I Deep Neural Network weights and activations are typically
tensors



Tensors and tensor multiplication

I Fibers are the higher-order analogue of matrix rows and
columns. Defined by fixing every index but one

I Slices are two-dimensional sections of a tensor, defined by
fixing all but two indices



Tensor n-Mode Product

I n-mode (matrix) product of a tensor A ∈ Rd1×d2×···×dN with a
matrix B ∈ Rp×dn is elementwise

(A ×n B)i1,··· ,in−1 j in+1···iN =
dn∑

in=1

Ai1i2···in···dNBjin

I each mode-n fiber of A is multiplied by the matrix B



Approximate Tensor Multiplication

Algorithm 1 Approximate Tensor n-Mode Product via Sampling

Input: An d1 × · · · × dn × · · · × dN dimensional tensor A and an
p×dn dimensional tensor B, an integer m and probabilities {pk}dnk=1
Output: Tensors CR such that CR ≈ AB

1: for t = 1 to m do
2: Pick it ∈ {1, ..., dn} with probability P[it = k] = pk in i.i.d.

with replacement
3: Set C (t) = 1√

mpit
A:,it ,: and R(t) = 1√

mpit
B:,it ,:

4: end for

I We can multiply CR using the classical algorithm

I Complexity O(d1 · · · dn−1mdn · · · dNp)



Approximate Tensor Multiplication: Mean and variance

M~i j , (A ×n B)i1,··· ,in−1 j in+1···iN =
dn∑

in=1

Ai1i2···in···iNBjin

M̂~i j ,
m∑

in=1

1

pin
Ai1i2···in···iNBjin

I Mean and variance of the matrix multiplication estimator

Lemma

I E
[
M̂~i j

]
= M~i j

I Var
[
M̂~i j

]
= 1

m

∑dn
in=1

1
pin

A2
i1i2···in···iNB

2
jin
− 1

m (M~i j)
2

I minimizep E‖M̂ −M‖2
F =

∑
~i j Var

[
M̂~i j

]
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Approximate Multiplication for Tensors

M̂~i j ,
m∑

in=1

1

pin
Ai1i2···in···iNBjin

I Importance sampling distribution

pk =
‖A:···k···:‖F‖B:k‖F∑
k ‖A:···k···:‖F‖B:k‖F



Verifying Matrix Multiplication

I Given three n × n matrices A,B,M

I verify whether
AB = M

I Naive method: O(n3)



Randomized Algorithm for Verifying Matrix Multiplication

I Sample a random vector r = [r1, ..., rn]T

I Compute ABr by first computing Br

and then A(Br)

I Compute Mr

I If A(Br) 6= Mr , then AB 6= M

I Otherwise, return AB = M

I Complexity: three matrix-vector multiplications O(n2)

Freivalds’ Algorithm (1977)
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Failure Probability

I Let r = [r1, ..., rn]T be i.i.d. +1,−1 each with probability 1
2

I Lemma P[ABr = Mr ] ≤ 1
2



Multiple trials

I r = [r1, ..., rn]T be i.i.d. 0, 1 each with probability 1
2 also works

I To improve the error probability, we run the algorithm
independently k times with

r1, ..., rk ∈ Rn i.i.d.

I If we ever find an rk such that

ABrk 6= Mr

I then the algorithm correctly returns AB 6= M

I If we always find ABr = Mr , then the error probability is at
most 1

2k

I For k = 25 we have error probability ≤ 10−9.
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Concentration bounds: Tighter success probability

I In AMM size of the sample is m = 1
δε2 .

dependence on the failure probability δ is not ideal

we can do better

I recall Markov’s Inequality

For Z > 0 and t > 0

P [Z > a] ≤ EZ
a

I Chebyshev’s inequality

Let X be a random variable with expectation E[X ] and
variance Var[X ]

P [|X − E[X ]| ≥ t] ≤ Var(X)

t2
.



Concentration of independent sums

I Chernoff Bound1

I Let X1, ...,Xm be independent random variables ∈ [0, 1] and
let µ = EX1

P[
∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣ > tµ] ≤ 2e−m

t2µ
3

1
There are other versions of the Chernoff bound which have better constants



Application 1: Monte Carlo Approximations

I Estimating π

I Sample z1, ..., zm i.i.d. uniform in [0, 1]2

I Let Zi = 1 if ‖zi‖2 ≤ 1 and 0 otherwise

I P[Zi = 1] = π
4

I Applying Chernoff bound we get∣∣∣∣∣ 1

m

m∑
i=1

Zi −
π

4

∣∣∣∣∣ ≤ επ4
with probability at least 1− 2e−mε

2 π
12

I we can pick m ≥ 12
πε2 log 2

δ and obtain an estimate π̂ such that

(1− ε)π ≤ π̂ ≤ (1 + ε)π with probability at least 1− δ
the range [(1− ε)π, (1 + ε)π] is a confidence interval
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Application 2: Amplifying Probability of Success

I Suppose we have a randomized algorithm which produces an ε
approximation |x̂ − x∗| ≤ ε
with probability at least 0.9

I Repeat the algorithm m times independently

I Take median of m outputs

I Let Xi = 1 if the i-th trial is good, i.e., |x̂i − x∗| ≤ ε
I Median of the m outputs is also good, i.e.,
|Median(x̂i )− x∗| ≤ ε if at least half of the Xi ’s are one

I Chernoff Bound implies that
∣∣ 1
m

∑m
i=1 Xi − 0.9

∣∣ ≤ 0.9t with

probability 1− e−t
20.9m/3. Pick t = 0.4/0.9

I Median is an ε approximation with probability at least
1− e−0.059m

e.g., for m = 200, failure probability is ≤ 7× 10−6.



Application 2: Amplifying Probability of Success

I Suppose we have a randomized algorithm which produces an ε
approximation |x̂ − x∗| ≤ ε
with probability at least 0.9

I Repeat the algorithm m times independently

I Take median of m outputs

I Let Xi = 1 if the i-th trial is good, i.e., |x̂i − x∗| ≤ ε
I Median of the m outputs is also good, i.e.,
|Median(x̂i )− x∗| ≤ ε if at least half of the Xi ’s are one

I Chernoff Bound implies that
∣∣ 1
m

∑m
i=1 Xi − 0.9

∣∣ ≤ 0.9t with

probability 1− e−t
20.9m/3. Pick t = 0.4/0.9

I Median is an ε approximation with probability at least
1− e−0.059m

e.g., for m = 200, failure probability is ≤ 7× 10−6.



”Median” for Approximate Matrix Multiplication

I Chernoff bound implies that majority of estimators are good

I The definition of median does not extend to the matrix case
in a simple way

I Recall AMM final probability bound

For any δ > 0, set m = 1
δ ε2 to obtain

P [‖AB − CR‖F > ε‖A‖F‖B‖F ] ≤ δ

I suppose ‖A‖F = ‖B‖F = 1 and let ε = 0.1, δ = 0.9

I Repeat independently and obtain C1R1, ...,CtRt in t
independent trials

‖AB − CiRi‖F < 0.1 with probability 0.9 for each i



”Median” for Approximate Matrix Multiplication

I Repeat independently and obtain C1R1, ...,CtRt in t
independent trials

‖AB − CiRi‖F < 0.1 with probability 0.9 for each i

I we don’t know which ones are good, i.e., ‖AB − CiRi‖F < 0.1

I Let Xi = 1 if the i-th trial is good and Xi = 0 otherwise

I Chernoff Bound implies that 1
m

∑m
i=1 Xi ≥ 0.5 with probability

1− e−0.059m, i.e., at least half of the matrices are good

I Compute ρi , |{j | j 6= i , ‖CiRi − CjRj‖F ≤ 0.2}|
I Output CkRk such that ρk ≤ t

2

I Lemma: ‖AB − CkRk‖F ≤ 0.3 with probability at
least1− e−0.059m.
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Median Trick for Matrices
I Proof:
I triangle inequality: ‖X + Y ‖F ≤ ‖X‖F + ‖Y ‖F and
I reverse triangle inequality: ‖X + Y ‖F ≥ ‖X‖F − ‖Y ‖F
I for matrices X ,Y ∈ Rn×p imply
‖CiRi − CjRj‖F ≤ ‖CiRi − AB‖F + ‖CjRj − AB‖F
‖CiRi − CjRj‖F ≥ ‖CiRi − AB‖F − ‖CjRj − AB‖F

I If CiRi is good,‖AB − CiRi‖F ≤ 0.1 then
it is close to at least half of the other CjRj ’s
ρi , |{j | j 6= i , ‖CiRi − CjRj‖F ≤ 0.2}| ≥ t

2 by triangle
inequality

I If CiRi is bad, i.e., ‖AB − CiRi‖F > 0.3 then
‖CiRi − CjRj‖F ≥ 0.2 by triangle inequality and ρi ≤ t

2
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Questions?


