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Tensors and tensor multiplication
P> A tensor is a multidimensional array
» Order of a tensor: number of dimensions, also known as

modes
» An element (/,j, k) of a third-order tensor X is denoted by

Xij
» (Frobenious) norm of a tensor

”XHF—\/Z,1 1 ,2 1- Z,N 1|X,1,2 ’N|2




Tensors and tensor multiplication

» Deep Neural Network weights and activations are typically

tensors
fc_3 fe 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution

(5 5) kernel Max-Pooling (5x5)kernel  May-pooling
valid padding (2x2) valid padding (2x2)

nlchannels nlchannels

(28x28x1) (24x24xn1) (12x12xn1) (8x8xn2) (4x4xn2)

n2 channels | 2

.’ " outeur

n3 units



Tensors and tensor multiplication

» Fibers are the higher-order analogue of matrix rows and
columns. Defined by fixing every index but one

> Slices are two-dimensional sections of a tensor, defined by
fixing all but two indices

() Mode-1 (column) fibers: x.ji  (b) Mode-2 (row) fibers: i () Mode-3 (tube) fibers: x;

= lif

(a) Horizontal slices: X;. (b) Lateral slices: X, (¢) Frontal slices: X, (or Xi)




Tensor n-Mode Product

» n-mode (matrix) product of a tensor A € R%*®xxdn with a
matrix B € RP*% is elementwise

dn
(A Xn Bivyo o sjinrrin = O Aisioiv Bl

in=1

» each mode-n fiber of A is multiplied by the matrix B



Approximate Tensor Multiplication

Algorithm 1 Approximate Tensor n-Mode Product via Sampling

Input: An dy X --- X d, X --- X dy dimensional tensor A and an
p x d, dimensional tensor B, an integer m and probabilities {pk}i"zl
Output: Tensors CR such that CR = AB

1: fort =1to mdo
2: Pick iy € {1,...,d,} with probability P[iy = k] = px in i.i.d.
with replacement

. t) — _ 1 .
3: Set C( ) = \/m—pitA:,lt,:

and R(t) = \/IiTB:7it’:
4: end for

> We can multiply CR using the classical algorithm
» Complexity O(d; - dp—1mdy - - dnp)



Approximate Tensor Multiplication: Mean and variance

n

A 2 :
MD = (A Xn B),'17...’,'n_1j,'n+1...,'N = Ai1f2"'fn"'fNijn

in=1

§ : A,1,2...,n...,NBJ,n

171

> Mean and variance of the matrix multiplication estimator

Lemma
> E [I\/F] = M,

» Var |: :| = Zl,,_l Pip IllQ"‘ln"‘INB_]ln (M_‘)



Approximate Tensor Multiplication: Mean and variance

n
A
My £ (A X B)ioin sjinein = D Aivipoinein Bii
in=1

§ : A,1,2...,n...,NBJ,n

171

> Mean and variance of the matrix multiplication estimator

Lemma
> E [I\/F] = M,

» Var |: :| = Zl,,_l Pip IllQ"‘ln"‘INB_]ln (M_‘)

> minimize, E|M — M||2 = 3= Var | M-,
P ij ij



Approximate Multiplication for Tensors

m

. 1
My 2> ;A,liz...,n...,NBj,n

: i
ih=1""

» Importance sampling distribution

Ak | Fl Bkl F

P =
Zk HAkHFHBkHF



Verifying Matrix Multiplication

» Given three n X n matrices A, B, M

» verify whether
AB=M

» Naive method: O(n%)



Randomized Algorithm for Verifying Matrix Multiplication

» Sample a random vector r = [ry, ..., ry] "

» Compute ABr by first computing Br
and then A(Br)

» Compute Mr

If A(Br) # Mr, then AB # M

» Otherwise, return AB = M

v



Randomized Algorithm for Verifying Matrix Multiplication

» Sample a random vector r = [ry, ..., ry] "
» Compute ABr by first computing Br
and then A(Br)
» Compute Mr
» If A(Br) # Mr, then AB # M
» Otherwise, return AB = M
» Complexity: three matrix-vector multiplications O(n?)

Freivalds' Algorithm (1977)



Failure Probability

» Let r =[r,...,rn]" bei.i.d. +1,—1 each with probability %
» Lemma P[ABr = Mr| < %



Multiple trials

» r=[r,...ra]" beiid. 0,1 each with probability 3 also works

» To improve the error probability, we run the algorithm
independently k times with

M, ...,k € R"i.id.
» If we ever find an r, such that
ABry # Mr
> then the algorithm correctly returns AB # M



Multiple trials

» r=[r,...ra]" beiid. 0,1 each with probability 3 also works

» To improve the error probability, we run the algorithm
independently k times with

M, ...,k € R"i.id.

» If we ever find an r, such that
ABry # Mr

> then the algorithm correctly returns AB # M

> If we always find ABr = Mr, then the error probability is at
most 2%

» For k = 25 we have error probability < 1072,



Concentration bounds: Tighter success probability

» In AMM size of the sample is m = %.
dependence on the failure probability  is not ideal
we can do better

» recall Markov's Inequality
For Z>0andt >0

EZ
P[Z>3]§T

» Chebyshev's inequality

Let X be a random variable with expectation E[X] and
variance Var[X]

Var(X)
t2

PlIX - E[X]| > t] <



Concentration of independent sums

» Chernoff Bound?!

» Let Xi, ..., X;y be independent random variables € [0,1] and
let n= EX;

1 <& 2
P[’m;X"‘u\Nu]Qe ms
1=

1 .
There are other versions of the Chernoff bound which have better constants



Application 1: Monte Carlo Approximations

» Estimating m

» Sample zi, ..., zy i.i.d. uniform in [0, 1]?
> Let Z; = 1if ||zj||]2 < 1 and 0 otherwise
> PlZi=1]=7



Application 1: Monte Carlo Approximations

Estimating

Sample z1, ..., Zy, i.i.d. uniform in [0,1]?
Let Z; = 1if ||zi[[2 < 1 and O otherwise
Plzi=1]=7%

Applying Chernoff bound we get

vVvYyyvyy

me 12

with probability at least 1 — 2e™
> we can pick m > % log 2 5 and obtain an estimate 7 such that
(1 —¢e)m <@ <(1+4 €)m with probability at least 1 —

the range [(1 — €)m, (1 + €)7] is a confidence interval



Application 2: Amplifying Probability of Success

» Suppose we have a randomized algorithm which produces an ¢
approximation |X — x*| < e
with probability at least 0.9

P> Repeat the algorithm m times independently

» Take median of m outputs



Application 2: Amplifying Probability of Success

» Suppose we have a randomized algorithm which produces an ¢
approximation |X — x*| < e

with probability at least 0.9

Repeat the algorithm m times independently

Take median of m outputs

Let X; = 1 if the i-th trial is good, i.e., |X; — x*| <€

Median of the m outputs is also good, i.e.,

|[Median(%;) — x*| < € if at least half of the X;'s are one
Chernoff Bound implies that | £ "7, X; — 0.9] < 0.9t with
probability 1 — e~t°0-9m/3_ Pick ¢t = 0.4/0.9

> Median is an € approximation with probability at least
1— 670.059m

vvyyy

v

e.g., for m = 200, failure probability is < 7 x 107°.



"Median" for Approximate Matrix Multiplication

» Chernoff bound implies that majority of estimators are good

» The definition of median does not extend to the matrix case
in a simple way

» Recall AMM final probability bound
For any 0 > 0, set m = ﬁ to obtain

P[|AB — CR|r > €||A|lF|IBllF] <6

» suppose ||Allr =||B|lFr=1and lete=0.1, 6 =0.9

» Repeat independently and obtain Ci Ry, ..., GiRy in t
independent trials

|IAB — CiRi||[r < 0.1 with probability 0.9 for each i



"Median" for Approximate Matrix Multiplication

» Repeat independently and obtain Ci Ry, ..., GiRy in t
independent trials

|IAB — CiRi||[r < 0.1 with probability 0.9 for each i
» we don’t know which ones are good, i.e., ||AB — C;R;||r < 0.1



"Median" for Approximate Matrix Multiplication

» Repeat independently and obtain Ci Ry, ..., GiRy in t
independent trials

|IAB — CiRi||[r < 0.1 with probability 0.9 for each i
» we don’t know which ones are good, i.e., ||AB — C;R;||r < 0.1
Let X; = 1 if the i-th trial is good and X; = 0 otherwise

» Chernoff Bound implies that % -7, X; > 0.5 with probability
1— e 0059m o at least half of the matrices are good

v



"Median" for Approximate Matrix Multiplication

» Repeat independently and obtain Ci Ry, ..., GiRy in t
independent trials

|IAB — CiRi||[r < 0.1 with probability 0.9 for each i
» we don’t know which ones are good, i.e., ||AB — C;R;||r < 0.1
Let X; = 1 if the i-th trial is good and X; = 0 otherwise

» Chernoff Bound implies that % >-m 1 Xi > 0.5 with probability
1— e 0059m o at least half of the matrices are good

> Compute pi £ [{j | j #7, IGR — GRlF < 0.2}
Output CyRy such that p < §

» Lemma: ||AB — CcRk||r < 0.3 with probability at
leastl — e~0:059m,

v

v



Median Trick for Matrices

> Proof:
» triangle inequality: || X + Y| < || X]|F + [ Y]|F and
» reverse triangle inequality: || X + Y| r > || X][r = || Y|F
> for matrices X, Y € R"™P imply
IGiRi — GRjllr < IGiR; — AB||F + || GGR; — AB|F
IGR: — GRllr > IGR; — ABllr — |GR; — ABlr



Median Trick for Matrices

>

>
>
>

Proof:

triangle inequality: [|[X + Y| < || X]||r + | Y| F and
reverse triangle inequality: ||[X + Y||r > || X|lr = |YllF
for matrices X, Y € R™P imply

IGiRi — GRjllr < IGiR; — AB||F + || GGR; — AB|F
IGRi = GRillF > | GiR — AB|l¢ — | GR; — AB]|¢

If CGiR; is good,||AB — C,'R,'HF < 0.1 then

it is close to at least half of the other (jR;'s

pi 210 1J # 0. |GR: — GRjllF < 0.2} > § by triangle
inequality



Median Trick for Matrices

>

>
>
>

Proof:

triangle inequality: [|[X + Y| < || X]||r + | Y| F and
reverse triangle inequality: ||[X + Y||r > || X|lr = |YllF
for matrices X, Y € R™P imply

IGiRi — GRjllr < IGiR; — AB||F + || GGR; — AB|F
IGiRi — GRillr > ||GR — AB|l¢ — | GR; — ABI|r

If CGiR; is good,||AB — C,'R,'HF < 0.1 then

it is close to at least half of the other (jR;'s

pi 2 1{j | i # 1. |GRi — GRillF < 0.2}] > § by triangle
inequality

If GiR; is bad, i.e., |AB — C;iRi||r > 0.3 then

|GiRi — GiRj||[F > 0.2 by triangle inequality and p; < §



Questions?



