EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Jan 21 2020

Randomized Linear Algebra Lecture 5: Randomized Dimension Reduction: Johnson Lindenstrauss Lemma

Recap: Verifying Matrix Multiplication

• Given three $n \times n$ matrices A, B, M

verify whether

$$AB = M$$

- Sample a random vector $r = [r_1, ..., r_n]^T$
- Compute ABr by first computing Br and then A(Br)
- Compute Mr
- If $A(Br) \neq Mr$, then $AB \neq M$
- Otherwise, return AB = M

Recap: Verifying Matrix Multiplication

• Given three $n \times n$ matrices A, B, M

verify whether

$$AB = M$$

- Sample a random vector $r = [r_1, ..., r_n]^T$
- Compute ABr by first computing Br and then A(Br)
- Compute Mr
- ▶ If $A(Br) \neq Mr$, then $AB \neq M$
- Otherwise, return AB = M
- Complexity: three matrix-vector multiplications O(n²)
 Freivalds' Algorithm (1977)

Recap: Failure Probability

Let r = [r₁,...,r_n]^T be i.i.d. from a discrete distribution taking k distinct values each with probability ¹/_k

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Lemma $\mathbb{P}[ABr = Mr] \leq \frac{1}{k}$

Dimension Reduction

- map a high dimensional vector to low dimensions such that certain properites are preserved
- examples so far:
- ► Approximate Matrix Multiplication AS^TSB ≈ AB where S is random

- Freivalds Algorithm ABr Mr where r is random
- Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

Dimension Reduction

- map a high dimensional vector to low dimensions such that certain properites are preserved
- examples so far:
- ▶ Approximate Matrix Multiplication AS^TSB ≈ AB where S is random
- Freivalds Algorithm ABr Mr where r is random
- Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

- Generic dimension reduction problem
- ▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < d
- another instance is Principal Component Analysis

Randomized Dimension Reduction

▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < d

- Linear transformation $y_i = Sx_i$ for i = 1, ..., n
- S is chosen randomly

Randomized Dimension Reduction

▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < d

- Linear transformation $y_i = Sx_i$ for i = 1, ..., n
- ► *S* is chosen randomly
- ► Approximate Matrix Multiplication: AS^TSB ≈ AB where S is random matrix

Geometry of Random Projections

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Johnson Lindenstrauss Lemma

▶ Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$1 - \epsilon \le \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon$$

Johnson Lindenstrauss Lemma

▶ Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{e^2 - e^3}$ such that

$$1 - \epsilon \le rac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon$$

Note that the target dimension *m* is independent of the original dimension *d*, and depends only on the number of points *n* and the accuracy parameter.

Johnson Lindenstrauss Lemma

▶ Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{e^2 - e^3}$ such that

$$1 - \epsilon \le rac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon$$

- Note that the target dimension m is independent of the original dimension d, and depends only on the number of points n and the accuracy parameter.
- ▶ more surprises: picking an $m \times d$ random matrix $S = \frac{1}{\sqrt{m}}G$ with $G_{ij} \sim N(0, 1)$ standard normal works with high probability!

Johnson Lindenstrauss (JL) Lemma

▶ JL Lemma:

$$\mathbb{P}[||Su_{ij}||_2^2 \in (1 \pm \epsilon) \text{ for all } i, j \in \{1, ..., n\}] \ge 1 - \delta$$

where $\delta \in (0, 1)$ for large enough *m*

Proof of JL Lemma

- We need to show $||Su_{ij}||_2^2$ is concentrated around 1
- **Lemma** Let $S_{ij} \sim \frac{1}{\sqrt{m}} N(0,1)$ and *u* be any fixed vector. Then

$$\mathbb{E}\|Su\|_2^2 = \|u\|$$

- implies that the distance between two points is preserved in expectation
- Proof:

Concentration of Measure for Uniform Distribution on the Sphere

- Suppose m = 1, i.e., we project to dimension one
- S is a row vector $S = g^T \in \mathbb{R}^d \sim N(0, I)$
- ▶ $\mathbb{P}\left[|g^{\mathsf{T}}u| \ge \epsilon\right] = \mathbb{P}\left[|g^{\mathsf{T}}e_1| \ge \epsilon\right] = \mathbb{P}\left[|g_1| \ge \epsilon\right]$ where e_1 is the first ordinary basis vector

Concentration of Measure for Uniform Distribution on the Sphere

- Suppose m = 1, i.e., we project to dimension one
- S is a row vector $S = g^T \in \mathbb{R}^d \sim N(0, I)$
- ▶ $\mathbb{P}\left[|g^{T}u| \ge \epsilon\right] = \mathbb{P}\left[|g^{T}e_{1}| \ge \epsilon\right] = \mathbb{P}\left[|g_{1}| \ge \epsilon\right]$ where e_{1} is the first ordinary basis vector
- Lemma: $\mathbb{P}\left[|s_1| \ge \frac{t \|g\|_2}{\sqrt{d}}\right] \le 2e^{-\frac{t^2}{2}}$.
- Note that $\frac{g}{\|g\|_2}$ is distributed uniformly on the unit sphere

Concentration of Measure for Uniform Distribution on the Sphere

Proof of JL Lemma

• Back to the general case $S \in \mathbb{R}^{m imes d}$

Consider the probability that ||Su||²₂ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$\mathbb{P}\left[\|Su\|_2^2 \ge (1+\epsilon)\|u\|_2^2\right]$$

Questions?

References

- Lecture notes on randomized linear algebra, Michael Mahoney https://arxiv.org/pdf/1608.04481
- Lecture notes, Jelani Nelson https://www.sketchingbigdata.org/fall17/lec/lec3.pdf
- Lecture notes, Aleksander Madry https://people.csail.mit.edu/madry/gems/notes/lecture21.pdf