EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Jan 21 2020

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Randomized Linear Algebra Lecture 5: Randomized Dimension Reduction: Johnson Lindenstrauss Lemma

KO K K Ø K K E K K E K V K K K K K K K K K

Recap: Verifying Matrix Multiplication

Given three $n \times n$ matrices A, B, M

 \blacktriangleright verify whether

$$
AB=M
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- Sample a random vector $r = [r_1, ..., r_n]^T$
- \triangleright Compute ABr by first computing Br and then $A(Br)$
- \blacktriangleright Compute Mr
- If $A(Br) \neq Mr$, then $AB \neq M$
- \triangleright Otherwise, return $AB = M$

Recap: Verifying Matrix Multiplication

Given three $n \times n$ matrices A, B, M

 \blacktriangleright verify whether

$$
AB=M
$$

KORKAR KERKER SAGA

- Sample a random vector $r = [r_1, ..., r_n]^T$
- \triangleright Compute ABr by first computing Br and then $A(Br)$
- \blacktriangleright Compute Mr
- If $A(Br) \neq Mr$, then $AB \neq M$
- \triangleright Otherwise, return $AB = M$
- ▶ Complexity: three matrix-vector multiplications $O(n^2)$ Freivalds' Algorithm (1977)

Recap: Failure Probability

In Let $r = [r_1, ..., r_n]^T$ be i.i.d. from a discrete distribution taking k distinct values each with probability $\frac{1}{k}$

► Lemma $\mathbb{P}[ABr = Mr] \leq \frac{1}{k}$ k

Dimension Reduction

- \triangleright map a high dimensional vector to low dimensions such that certain properites are preserved
- \blacktriangleright examples so far:
- ▶ Approximate Matrix Multiplication $AS^TSB \approx AB$ where S is random

- \triangleright Freivalds Algorithm ABr Mr where r is random
- Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

Dimension Reduction

- \triangleright map a high dimensional vector to low dimensions such that certain properites are preserved
- \blacktriangleright examples so far:
- ▶ Approximate Matrix Multiplication $AS^TSB \approx AB$ where S is random
- \triangleright Freivalds Algorithm ABr Mr where r is random
- Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

- \blacktriangleright Generic dimension reduction problem
- ► Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where $m < d$
- \triangleright another instance is Principal Component Analysis

Randomized Dimension Reduction

► Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where $m < d$

KORKARYKERKER POLO

- lacktriangleright Linear transformation $y_i = Sx_i$ for $i = 1, ..., n$
- \triangleright S is chosen randomly

Randomized Dimension Reduction

► Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where $m < d$

- lacktriangleright Linear transformation $y_i = Sx_i$ for $i = 1, ..., n$
- \triangleright S is chosen randomly
- Approximate Matrix Multiplication: $AS^TSB \approx AB$ where S is random matrix

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Geometry of Random Projections

Kロトメ部トメミトメミト ミニのQC

Johnson Lindenstrauss Lemma

let $\epsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$). Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S\,:\,\mathbb{R}^n\rightarrow\mathbb{R}^m$ with $m=\frac{9\log(n)}{\epsilon^2-\epsilon^3}$ $\frac{\log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$
1-\epsilon \leq \frac{\|Sx_i-Sx_j\|_2^2}{\|x_i-x_j\|_2^2} \leq 1+\epsilon
$$

Johnson Lindenstrauss Lemma

let $\epsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$). Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S\,:\,\mathbb{R}^n\rightarrow\mathbb{R}^m$ with $m=\frac{9\log(n)}{\epsilon^2-\epsilon^3}$ $\frac{\log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$
1-\epsilon \le \frac{\|Sx_i-Sx_j\|_2^2}{\|x_i-x_j\|_2^2} \le 1+\epsilon
$$

 \blacktriangleright Note that the target dimension m is **independent of the** original dimension d , and depends only on the number of points n and the accuracy parameter.

KELK KØLK VELKEN EL 1990

Johnson Lindenstrauss Lemma

let $\epsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$). Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S\,:\,\mathbb{R}^n\rightarrow\mathbb{R}^m$ with $m=\frac{9\log(n)}{\epsilon^2-\epsilon^3}$ $\frac{\log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$
1-\epsilon \le \frac{\|Sx_i-Sx_j\|_2^2}{\|x_i-x_j\|_2^2} \le 1+\epsilon
$$

- \blacktriangleright Note that the target dimension m is **independent of the** original dimension d , and depends only on the number of **points** *n* and the accuracy parameter.
- ▶ more surprises: picking an $m \times d$ random matrix $S = \frac{1}{\sqrt{2}}$ $\frac{1}{\overline{m}}$ G with $G_{ii} \sim N(0, 1)$ standard normal works with high probability!

KORKAR KERKER SAGA

Johnson Lindenstrauss (JL) Lemma

\n- Define
$$
u_{ij} \triangleq \frac{x_i - x_j}{\|x_i - x_j\|_2}
$$
.
\n- note that $\|u_{ij}\|_2 = 1$.
\n

\n- JL Lemma:
$$
\mathbb{P}[\|Su_{ij}\|_2^2 \in (1 \pm \epsilon)
$$
 for all $i, j \in \{1, ..., n\}]\geq 1-\delta$ where $\delta \in (0,1)$ for large enough m
\n

KOKK@KKEKKEK E 1990

Proof of JL Lemma

- \blacktriangleright We need to show $\|S_{uj}\|_2^2$ is concentrated around 1
- ► Lemma Let $S_{ij} \sim \frac{1}{\sqrt{N}}$ $\frac{1}{m}N(0,1)$ and u be any fixed vector. Then

$$
\mathbb{E}||Su||_2^2 = ||u||
$$

- \triangleright implies that the distance between two points is preserved in expectation
- \blacktriangleright Proof:

Concentration of Measure for Uniform Distribution on the **Sphere**

- Suppose $m = 1$, i.e., we project to dimension one ► S is a row vector $S = g^T \in \mathbb{R}^d \sim N(0, I)$
- $\blacktriangleright \mathbb{P} \left[|g^T u| \geq \epsilon \right] = \mathbb{P} \left[|g^T e_1| \geq \epsilon \right] = \mathbb{P} \left[|g_1| \geq \epsilon \right]$ where e_1 is the first ordinary basis vector

Concentration of Measure for Uniform Distribution on the **Sphere**

- Suppose $m = 1$, i.e., we project to dimension one
- ► S is a row vector $S = g^T \in \mathbb{R}^d \sim N(0, I)$
- $\blacktriangleright \mathbb{P} \left[|g^T u| \geq \epsilon \right] = \mathbb{P} \left[|g^T e_1| \geq \epsilon \right] = \mathbb{P} \left[|g_1| \geq \epsilon \right]$ where e_1 is the first ordinary basis vector
- ▶ Lemma: $\mathbb{P}\left[|s_1|\geq \frac{t||g||_2}{\sqrt{d}}\right]$ d $\Big] \leq 2e^{-\frac{t^2}{2}}$.
- Note that $\frac{g}{\|g\|_2}$ is distributed uniformly on the unit sphere

KELK KØLK VELKEN EL 1990

Concentration of Measure for Uniform Distribution on the Sphere

2 I Lemma: P h i − ^t |g1| ≥ ^t^k gk² ≤ 2e ² . √ d I Note that ^g is distributed uniformly on the unit sphere kgk² q I Pythagorean theorem: ^t 2 2 2 t ^d + R cap = 1 implies Rcap = 1 − d ^d−¹ ^q 2 1− ^t area of the spherical cap I P h i g1 t | | ≥ √ ≤ area of the sphere [≤] d kgk² d−1 d 1 I using the fact (1 − x ⁿ ≤ e [−]^x we get) n 2 h i − ^t P g1 t | | ≥ √ ≤ 2e ² .kgk² d

Proof of JL Lemma

▶ Back to the general case $S \in \mathbb{R}^{m \times d}$

Sonsider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$
\mathbb{P}\left[\|S u\|_2^2 \geq (1+\epsilon)\|u\|_2^2\right]
$$

Questions?

KOKK@KKEKKEK E 1990

References

- \blacktriangleright Lecture notes on randomized linear algebra, Michael Mahoney <https://arxiv.org/pdf/1608.04481>
- ▶ Lecture notes, Jelani Nelson <https://www.sketchingbigdata.org/fall17/lec/lec3.pdf>
- \blacktriangleright Lecture notes, Aleksander Madry <https://people.csail.mit.edu/madry/gems/notes/lecture21.pdf>

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +