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Randomized Linear Algebra
Lecture 5: Randomized Dimension Reduction:

Johnson Lindenstrauss Lemma



Recap: Verifying Matrix Multiplication

I Given three n × n matrices A,B,M

I verify whether
AB = M

I Sample a random vector r = [r1, ..., rn]T

I Compute ABr by first computing Br

and then A(Br)

I Compute Mr

I If A(Br) 6= Mr , then AB 6= M

I Otherwise, return AB = M

I Complexity: three matrix-vector multiplications O(n2)

Freivalds’ Algorithm (1977)
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Recap: Failure Probability

I Let r = [r1, ..., rn]T be i.i.d. from a discrete distribution taking
k distinct values each with probability 1

k

I Lemma P[ABr = Mr ] ≤ 1
k



Dimension Reduction

I map a high dimensional vector to low dimensions such that
certain properites are preserved

I examples so far:

I Approximate Matrix Multiplication ASTSB ≈ AB where S is
random

I Freivalds Algorithm ABr −Mr where r is random

I Trace estimation rTMr ≈ tr(M) where r is random

I Generic dimension reduction problem

I Given vectors x1, ..., xn ∈ Rd , compress the data points into
low dimensional representation y1, ..., yn ∈ Rm where m < d

I another instance is Principal Component Analysis
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Randomized Dimension Reduction

I Given vectors x1, ..., xn ∈ Rd , compress the data points into
low dimensional representation y1, ..., yn ∈ Rm where m < d

m                                S
d

I Linear transformation yi = Sxi for i = 1, ..., n

I S is chosen randomly

I Approximate Matrix Multiplication: ASTSB ≈ AB

where S is random matrix
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Geometry of Random Projections



Johnson Lindenstrauss Lemma

I Let ε ∈ (0, 12). Given any set of points {x1, ..., xn} in Rd ,

there exists a map S : Rn → Rm with m = 9 log(n)
ε2−ε3 such that

1− ε ≤
‖Sxi − Sxj‖22
‖xi − xj‖22

≤ 1 + ε

I Note that the target dimension m is independent of the
original dimension d , and depends only on the number of
points n and the accuracy parameter.

I more surprises: picking an m × d random matrix S = 1√
m
G

with Gij ∼ N(0, 1) standard normal works with high
probability!
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Johnson Lindenstrauss (JL) Lemma

I Define uij ,
xi−xj
‖xi−xj‖2 .

I note that ‖uij‖2 = 1

I JL Lemma:
P
[
‖Suij‖22 ∈ (1± ε) for all i , j ∈ {1, ..., n}

]
≥ 1− δ

where δ ∈ (0, 1) for large enough m



Proof of JL Lemma
I We need to show ‖Suij‖22 is concentrated around 1
I Lemma Let Sij ∼ 1√

m
N(0, 1) and u be any fixed vector. Then

E‖Su‖22 = ‖u‖
I implies that the distance between two points is preserved in

expectation
I Proof:



Concentration of Measure for Uniform Distribution on the
Sphere

I Suppose m = 1, i.e., we project to dimension one

I S is a row vector S = gT ∈ Rd ∼ N(0, I )

I P
[
|gTu| ≥ ε

]
= P

[
|gT e1| ≥ ε

]
= P [|g1| ≥ ε]

where e1 is the first ordinary basis vector

I Lemma: P
[
|s1| ≥ t‖g‖2√

d

]
≤ 2e−

t2

2 .

I Note that g
‖g‖2 is distributed uniformly on the unit sphere
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Concentration of Measure for Uniform Distribution on the
Sphere

I Lemma: P
[
|g1| ≥ t‖g‖2√

d

]
≤ 2e−

t2

2 .

I Note that g
‖g‖2 is distributed uniformly on the unit sphere

I Pythagorean theorem: t2

d + R2
cap = 1 implies Rcap =

√
1− t2

d

I P
[
| g1
‖g‖2 | ≥

t√
d

]
≤ area of the spherical cap

area of the sphere ≤
(√

1− t2

d

)d−1

1d−1

I using the fact (1− x
n )n ≤ e−x we get

P
[
| g1
‖g‖2 | ≥

t√
d

]
≤ 2e−

t2

2 .



Proof of JL Lemma

I Back to the general case S ∈ Rm×d

I Consider the probability that ‖Su‖22 deviates from 1, i.e.,
projected vectors are stretched more than their expectation

P
[
‖Su‖22 ≥ (1 + ε)‖u‖22

]



Questions?
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