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Randomized Linear Algebra
Lecture 5: Randomized Dimension Reduction:
Johnson Lindenstrauss Lemma



Recap: Verifying Matrix Multiplication

» Given three n X n matrices A, B, M
> verify whether
AB=M
» Sample a random vector r = [ry, ..., ry] "
» Compute ABr by first computing Br
and then A(Br)
» Compute Mr
If A(Br) # Mr, then AB # M
» Otherwise, return AB = M

v



Recap: Verifying Matrix Multiplication

» Given three n X n matrices A, B, M

> verify whether
AB=M

v

Sample a random vector r = [r1, ..., 1] "

v

Compute ABr by first computing Br
and then A(Br)

Compute Mr

If A(Br) # Mr, then AB # M
Otherwise, return AB =M

vvyyy

Complexity: three matrix-vector multiplications O(n?)
Freivalds' Algorithm (1977)



Recap: Failure Probability

» Let r =[r,...,ry] " bei.i.d. from a discrete distribution taking
k distinct values each with probability %

> Lemma P[ABr=Mr] < i



Dimension Reduction

» map a high dimensional vector to low dimensions such that
certain properites are preserved

P> examples so far:

» Approximate Matrix Multiplication ASTSB ~ AB where S is
random

» Freivalds Algorithm ABr — Mr where r is random

» Trace estimation r” Mr ~ tr(M) where r is random



Dimension Reduction

» map a high dimensional vector to low dimensions such that
certain properites are preserved

P> examples so far:

» Approximate Matrix Multiplication ASTSB ~ AB where S is
random

» Freivalds Algorithm ABr — Mr where r is random

» Trace estimation r” Mr ~ tr(M) where r is random

» Generic dimension reduction problem

> Given vectors xi, ..., X, € R, compress the data points into
low dimensional representation yi,...,y, € R™ where m < d

» another instance is Principal Component Analysis



Randomized Dimension Reduction

> Given vectors xi, ..., x, € R, compress the data points into
low dimensional representation yi, ..., y, € R™ where m < d

d

» Linear transformation y; = Sx; for i = 1,...,n
» S is chosen randomly



Randomized Dimension Reduction

> Given vectors xi, ..., x, € R, compress the data points into
low dimensional representation yi, ..., ¥, € R™ where m < d

d

» Linear transformation y; = Sx; for i = 1,...,n
» S is chosen randomly
» Approximate Matrix Multiplication: ASTSB ~ AB

where S is random matrix



Geometry of Random Projections




Johnson Lindenstrauss Lemma

> Let e € (0,3). Given any set of points {x1,..., s} in R,
there exists a map S : R” — R™ with m = 9'°g(") such that

% =S5l _ .

1—€e<
Ixi = xill3



Johnson Lindenstrauss Lemma

> Let e € (0,3). Given any set of points {x1,..., s} in R,
9Iog(n)

there exists a map S§ : R” — R™ with m = = such that
Le ISi=Sxla
Ix; — 113

P> Note that the target dimension m is independent of the
original dimension d, and depends only on the number of
points n and the accuracy parameter.



Johnson Lindenstrauss Lemma

> Let e € (0,3). Given any set of points {x1,..., s} in R,

there exists a map S : R” — R™ with m = ?Lg(n) such that
HX, XJH2

P> Note that the target dimension m is independent of the
original dimension d, and depends only on the number of
points n and the accuracy parameter.

» more surprises: picking an m x d random matrix S = G

with Gjj ~ N(0,1) standard normal works with high
probability!

s



Johnson Lindenstrauss (JL) Lemma

Xj—X;

; A
» Define u; = =Tz

» note that ||uj|> =1

» JL Lemma:
P[||Suj||3 € (L +e€) foralli,j€{l,...,n}] >1-94

where 6 € (0, 1) for large enough m



Proof of JL Lemma

> We need to show ||Suj||3 is concentrated around 1
» Lemma Let S ~ ﬁN(O, 1) and u be any fixed vector. Then

E|[Sull3 = [|ul

» implies that the distance between two points is preserved in
expectation
> Proof:



Concentration of Measure for Uniform Distribution on the
Sphere

» Suppose m =1, i.e., we project to dimension one
> Sisarowvector S =g’ € RY ~ N(0,/)
> PllgTul>¢] =P[lgTel] > €] =P[lg1] > ]

where e; is the first ordinary basis vector



Concentration of Measure for Uniform Distribution on the
Sphere

» Suppose m =1, i.e., we project to dimension one

> Sisarow vector S =g’ € RY ~ N(0, /)

> PllgTul>e] =P[lghei| > ¢] =P[lga] > ]
where e; is the first ordinary basis vector

t _2
» Lemma: P []51\ > %} <2e 7.

> Note that IIggIIz is distributed uniformly on the unit sphere



Concentration of Measure for Uniform Distribution on
Sphere
2
» Lemma: P [\g | > M\/gﬂ <265

> Note that el ” is distributed uniformly on the unit sphere

» Pythagorean theorem: + R2 =1 implies R., = — %

cap

d—1
[| B } area of the spherical cap < ( 77)
IIgH2 Vd] = area of the sphere = 1d-1

» using the fact (1 - %)" S e we get

[‘ugu | > A <2e 5.

the



Proof of JL Lemma

» Back to the general case S € R™*¢

» Consider the probability that ||Su||3 deviates from 1, i.e.,
projected vectors are stretched more than their expectation

P[lISull3 > (1 +)lull3 ]



Questions?
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