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Dimension Reduction

I map a high dimensional vector to low dimensions such that
certain properites are preserved

I examples so far:

I Approximate Matrix Multiplication ASTSB ≈ AB where S is
random

I Freivalds Algorithm ABr −Mr where r is random

I Trace estimation rTMr ≈ tr(M) where r is random

I Generic dimension reduction problem

I Given vectors x1, ..., xn ∈ Rd , compress the data points into
low dimensional representation y1, ..., yn ∈ Rm where m < d

I another instance is Principal Component Analysis
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Randomized Dimension Reduction

I Given vectors x1, ..., xn ∈ Rd , compress the data points into
low dimensional representation y1, ..., yn ∈ Rm where m < d

m                                S
d

I Linear transformation yi = Sxi for i = 1, ..., n

I S is chosen randomly

I Approximate Matrix Multiplication: ASTSB ≈ AB

where S is random matrix
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Geometry of Random Projections



Johnson Lindenstrauss Lemma

I Let ε ∈ (0, 12). Given any set of points {x1, ..., xn} in Rd ,

there exists a map S : Rn → Rm with m = 9 log(n)
ε2−ε3 such that

1− ε ≤
‖Sxi − Sxj‖22
‖xi − xj‖22

≤ 1 + ε

I Note that the target dimension m is independent of the
original dimension d , and depends only on the number of
points n and the accuracy parameter.

I more surprises: picking an m × d random matrix S = 1√
m
G

with Gij ∼ N(0, 1) standard normal works with high
probability!



Johnson Lindenstrauss Lemma

I Let ε ∈ (0, 12). Given any set of points {x1, ..., xn} in Rd ,

there exists a map S : Rn → Rm with m = 9 log(n)
ε2−ε3 such that

1− ε ≤
‖Sxi − Sxj‖22
‖xi − xj‖22

≤ 1 + ε

I Note that the target dimension m is independent of the
original dimension d , and depends only on the number of
points n and the accuracy parameter.

I more surprises: picking an m × d random matrix S = 1√
m
G

with Gij ∼ N(0, 1) standard normal works with high
probability!



Johnson Lindenstrauss Lemma

I Let ε ∈ (0, 12). Given any set of points {x1, ..., xn} in Rd ,

there exists a map S : Rn → Rm with m = 9 log(n)
ε2−ε3 such that

1− ε ≤
‖Sxi − Sxj‖22
‖xi − xj‖22

≤ 1 + ε

I Note that the target dimension m is independent of the
original dimension d , and depends only on the number of
points n and the accuracy parameter.

I more surprises: picking an m × d random matrix S = 1√
m
G

with Gij ∼ N(0, 1) standard normal works with high
probability!



Johnson Lindenstrauss (JL) Lemma

I Define uij ,
xi−xj
‖xi−xj‖2 .

I note that ‖uij‖2 = 1

I JL Lemma:
P
[
‖Suij‖22 ∈ (1± ε) for all i , j ∈ {1, ..., n}

]
≥ 1− δ

where δ ∈ (0, 1) for large enough m



Proof of JL Lemma
I We need to show ‖Suij‖22 is concentrated around 1
I Lemma Let Sij ∼ 1√

m
N(0, 1) and u be any fixed vector. Then

E‖Su‖22 = ‖u‖
I implies that the distance between two points is preserved in

expectation
I Proof:



Concentration of Measure for Uniform Distribution on the
Sphere

I Suppose m = 1, i.e., we project to dimension one

I S is a row vector S = gT ∈ Rd ∼ N(0, I )

I P
[
|gTu| ≥ ε

]
= P

[
|gT e1| ≥ ε

]
= P [|g1| ≥ ε]

where e1 is the first ordinary basis vector

I Lemma: P
[
|s1| ≥ t‖g‖2√

d

]
≤ 2e−

t2

2 .

I Note that g
‖g‖2 is distributed uniformly on the unit sphere
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Concentration of Measure for Uniform Distribution on the
Sphere

I Lemma: P
[
|g1| ≥ t‖g‖2√

d

]
≤ 2e−

t2

2 .

I Note that g
‖g‖2 is distributed uniformly on the unit sphere

I Pythagorean theorem: t2

d + R2
cap = 1 implies Rcap =

√
1− t2

d

I P
[
| g1
‖g‖2 | ≥

t√
d

]
≤ area of the spherical cap

area of the sphere ≤
(√

1− t2

d

)d−1

1d−1

I using the fact (1− x
n )n ≤ e−x we get

P
[
| g1
‖g‖2 | ≥

t√
d

]
≤ 2e−

t2

2 .



Proof of JL Lemma
I Back to the general case S ∈ Rm×d

I Consider the probability that ‖Su‖22 deviates from 1, i.e.,
projected vectors are stretched more than their expectation

P
[
‖Su‖22 ≥ (1 + ε)‖u‖22

]
≤ e−(ε

2−ε3)m
4

I P
[
‖Suij‖22 ≥ (1 + ε)‖uij‖22

]
≤
∑

i ,j e
−(ε2−ε3)m

4 = n2e−(ε
2−ε3)m

4

Set error probability = 1
2 = n2e−(ε

2−ε3)m
4

I m = 9 log n
ε2−ε3

for smaller error probability 0.01 = n2e−(ε
2−ε3)m

4

I m = constant×log n
ε2−ε3
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True ‘projections’: random subspaces also work

I Pick S(i) uniformly random on the unit sphere

I Pick S(i+1) uniformly random on the unit sphere and
⊥ S(i), ...S(1)

I S is a projection matrix, which projects onto a uniformly
random subspace

P
{∣∣∣∣‖Su‖2 −√m

d

∣∣∣∣ > t

}
≤ 2e

−t2d
2

I Applying union bound for all points i , j = 1, ..., d gives a
similar result

I Random i.i.d. S matrices are easier to generate and
approximately orthogonal: ESTS = I



Computationally cheaper random matrices

I Gaussian Sij = 1√
m
N(0, 1)

I Rademacher

Sij =

{
+ 1

m with probability 1√
m

− 1√
m

with probability 1
2

(1)

I Bernoulli-Rademacher

Sij =


+
√
3√
m

with probability 1
2

0 with probability 2
3

−
√
3√
m

with probability 1
2

(2)

I other sparse matrices (e.g. one non-zero per column)

I Fourier transform based matrices



Optimality of the JL Embedding

I Let ε ∈ (0, 12). Given any set of points {x1, ..., xn} in Rd ,

there exists a map S : Rn → Rm with m = 9 log(n)
ε2−ε3 such that

1− ε ≤
‖Sxi − Sxj‖22
‖xi − xj‖22

≤ 1 + ε (?)

I Can we embed to a smaller dimension?

I maybe using a nonlinear embedding?

I No

Johnson-Lindenstrauss Embedding is optimal

I There exists a set of n points {x1, ..., xn} such that any
linear/nonlinear embedding satisfying (?) must have
m ≥ O( log n

ε2
) .

Optimality of the Johnson-Lindenstrauss Lemma, Larsen and Nelson, 2016
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Applications of JL Embeddings

I General idea: run algorithms on Sx1, ...,Sxn ∈ Rm instead of
x1, ..., xn

I Examples:

I approximate nearest neighbor search
I estimating norms and frequency moments
I regression
I classification
I randomized matrix operations (matrix multiplication,

decomposition etc)
I optimization
I ...



Approximate Nearest Neighbors

I Given a point set P = {x1, ..., xn} ∈ Rd

I and a query point q ∈ Rd

I Find an ε-approximate nearest neighbor to q from P



Estimating p-norms

I Streaming data

xt+1 = xt + δt

I Estimate ‖x‖2
I second moment

I linear sketch

Generate S randomly such that ESTS = I

Let yt = Sxt

yt = Sxt + Sδt
I ‖Sy‖22 ≈ ‖Sx‖22
I Can also be extended to ‖x‖p
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Music similarity prediction

I Predict the similarity score ∈ [0, 1] between 30 second tracks

I Frequency based features from each 200ms segment results in
106 features

I OLS: randomly pick m features

I COLS: apply random projection to dimension m

Fard et al. Compressed Least-Squares Regression on Sparse Spaces, 2012
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Random Projection for Approximate Matrix Multiplication

I matrices A and B

output ASTSB where S is a random projection matrix

I need to characterize ‖Sx‖22 − ‖x‖22 for vectors x

I Definition: (ε, δ, p) JL moment property

E
∣∣‖Sx‖22 − 1

∣∣p ≤ εpδ
for any unit norm x where p ≥ 2

I S ∈ Rm×n ∼ 1√
m
×random i.i.d. sub-Gaussian, e.g., ±1, or

N(0, 1) with m = c1
ε2

log 1
δ satisfies (ε, δ, log 1

δ ) JL moment
property

I S ∈ Rm×n ∼ 1√
m
×CountSketch matrix (one nonzero per

column, which is ±1 at a uniformly random location) with
m = c2

ε2δ
satisfies (ε, δ, 2) JL moment property

I S ∈ Rm×n ∼ 1√
m
×Fast JL Transform with m = c3

ε log 1
δ

satisfies (ε, δ, log n
δ ) JL moment property
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Approximating inner products

I Lemma

E
∣∣‖Sx‖22 − 1

∣∣p ≤ εpδ
for any unit norm x implies that

E
∣∣∣xTSTSy − xT y

∣∣∣p ≤ 3εpδ

since

xT y =
1

2

(
‖x‖22 + ‖y‖22 − ‖x − y‖22

)
xTSTSy =

1

2

(
‖Sx‖22 + ‖Sy‖22 − ‖S(x − y)‖22

)



Random Projection for Approximate Matrix Multiplication

I Let C = ASTSB

P [‖AB − C‖F > 3ε‖A‖F‖B‖F ] =
[
‖AB − C‖pF > (3ε)p‖A‖pF‖B‖

p
F

]
≤

E‖AB − C‖pF
(3ε‖A‖F‖B‖F )p

I Let ai = A(i) and bi = B(i)

‖AB − C‖2F =
∑
ij

∣∣∣(Sai )T (Sbj)− aTi bj

∣∣∣2

I we can normalize ai
‖ai‖2 , bi

‖bi‖2 and apply JL moment property
to get

P [‖AB − C‖F > 3ε‖A‖F‖B‖F ] ≤ δ
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Final error bound for random projection

I Let the approximate product of AB be C = ASTSB

P [‖AB − C‖F > 3ε‖A‖F‖B‖F ] ≤ δ

I Follows from JL Moment property

I S ∈ Rm×n ∼ 1√
m
×random i.i.d. sub-Gaussian, e.g., ±1, or

N(0, 1) with m = c1
ε2

log 1
δ

I S ∈ Rm×n ∼ 1√
m
×CountSketch matrix (one nonzero per

column, which is ±1 at a uniformly random location) with
m = c2

ε2δ

I S ∈ Rm×n ∼ 1√
m
×Fast JL Transform with m = c3

ε log 1
δ

I Sparse JL and Fast JL are more efficient

I advantages: doesn’t require any knowledge about matrices A
and B (oblivious)

I optimal sampling probabilities depend on the column/row
norms of A and B
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Questions?


