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Randomized Linear Algebra
Lecture 6: Johnson Lindenstrauss Lemma and
Applications



Dimension Reduction

» map a high dimensional vector to low dimensions such that
certain properites are preserved

P> examples so far:

» Approximate Matrix Multiplication ASTSB ~ AB where S is
random

» Freivalds Algorithm ABr — Mr where r is random

» Trace estimation r” Mr ~ tr(M) where r is random



Dimension Reduction

» map a high dimensional vector to low dimensions such that
certain properites are preserved

P> examples so far:

» Approximate Matrix Multiplication ASTSB ~ AB where S is
random

» Freivalds Algorithm ABr — Mr where r is random

» Trace estimation r” Mr ~ tr(M) where r is random

» Generic dimension reduction problem

> Given vectors xi, ..., X, € R, compress the data points into
low dimensional representation yi,...,y, € R™ where m < d

» another instance is Principal Component Analysis



Randomized Dimension Reduction

> Given vectors xi, ..., x, € R, compress the data points into
low dimensional representation yi, ..., y, € R™ where m < d

d

» Linear transformation y; = Sx; for i = 1,...,n
» S is chosen randomly



Randomized Dimension Reduction

> Given vectors xi, ..., x, € R, compress the data points into
low dimensional representation yi, ..., ¥, € R™ where m < d

d

» Linear transformation y; = Sx; for i = 1,...,n
» S is chosen randomly
» Approximate Matrix Multiplication: ASTSB ~ AB

where S is random matrix



Geometry of Random Projections




Johnson Lindenstrauss Lemma

> Let e € (0,3). Given any set of points {x1,..., s} in R,
there exists a map S : R” — R™ with m = 9'°g(") such that

% =S5l _ .

1—€e<
Ixi = xill3



Johnson Lindenstrauss Lemma

> Let e € (0,3). Given any set of points {x1,..., s} in R,
9Iog(n)

there exists a map S§ : R” — R™ with m = = such that
Le ISi=Sxla
Ix; — 113

P> Note that the target dimension m is independent of the
original dimension d, and depends only on the number of
points n and the accuracy parameter.



Johnson Lindenstrauss Lemma

> Let e € (0,3). Given any set of points {x1,..., s} in R,

there exists a map S : R” — R™ with m = ?Lg(n) such that
HX, XJH2

P> Note that the target dimension m is independent of the
original dimension d, and depends only on the number of
points n and the accuracy parameter.

» more surprises: picking an m x d random matrix S = G

with Gjj ~ N(0,1) standard normal works with high
probability!

s



Johnson Lindenstrauss (JL) Lemma

Xj—X;

; A
» Define u; = =Tz

» note that ||uj|> =1

» JL Lemma:
P[||Suj||3 € (L +e€) foralli,j€{l,...,n}] >1-94

where 6 € (0, 1) for large enough m



Proof of JL Lemma

> We need to show ||Suj||3 is concentrated around 1
» Lemma Let S ~ ﬁN(O, 1) and u be any fixed vector. Then

E|[Sull3 = [|ul

» implies that the distance between two points is preserved in
expectation
> Proof:



Concentration of Measure for Uniform Distribution on the
Sphere

» Suppose m =1, i.e., we project to dimension one
> Sisarowvector S =g’ € RY ~ N(0,/)
> PllgTul>¢] =P[lgTel] > €] =P[lg1] > ]

where e; is the first ordinary basis vector



Concentration of Measure for Uniform Distribution on the
Sphere

» Suppose m =1, i.e., we project to dimension one

> Sisarow vector S =g’ € RY ~ N(0, /)

> PllgTul>e] =P[lghei| > ¢] =P[lga] > ]
where e; is the first ordinary basis vector

t _2
» Lemma: P []51\ > %} <2e 7.

> Note that IIggIIz is distributed uniformly on the unit sphere



Concentration of Measure for Uniform Distribution on
Sphere
2
» Lemma: P [\g | > M\/gﬂ <265

> Note that el ” is distributed uniformly on the unit sphere

» Pythagorean theorem: + R2 =1 implies R., = — %

cap

d—1
[| B } area of the spherical cap < ( 77)
IIgH2 Vd] = area of the sphere = 1d-1

» using the fact (1 - %)" S e we get

[‘ugu | > A <2e 5.

the



Proof of JL Lemma

» Back to the general case S € R™*¢
» Consider the probability that ||Sul|3 deviates from 1, i.e.,

projected vectors are stretched more than their expectation
2

P[Sul3 > (1+e)|uf3] < e (@)%



Proof of JL Lemma

» Back to the general case S € R™*¢
» Consider the probability that ||Sul|3 deviates from 1, i.e.,
projected vectors are stretched more than their expectation

PISul3 > (1+e)|ul}] < e @N%

e2—¢e3 —(e2=3)
P[|Suzl3 > (L +e)llugl3 ] <325 e (7T = e ()5



Proof of JL Lemma

» Back to the general case S € R™*¢
» Consider the probability that ||Sul|3 deviates from 1, i.e.,
projected vectors are stretched more than their expectation

PlISul = (1 +e)uf3] < e D%

(e 2_3)m —(2—-3)m
P [[|Sugll3 > (1 +e)llugll3 ] <3 )% = e (€)%

Set error probability = 1 = e (€=)7

__ 9logn
> m= 2_¢3




Proof of JL Lemma

» Back to the general case S € R™*¢
» Consider the probability that ||Sul|3 deviates from 1, i.e.,
projected vectors are stretched more than their expectation

PlISul = (1 +e)uf3] < e D%

> B[ISugl3 > (1+0)usl3 ] < ¥,y @ = e (@)%

Set error probability = 1 = e (€=)7

__ 9logn
> m= 523

. _(2_.3\m
for smaller error probability 0.01 = n?e (€=€)%
__ constantXxlogn
> m= T 2.3



True ‘projections’: random subspaces also work

» Pick Sy uniformly random on the unit sphere

» Pick 5(i11) uniformly random on the unit sphere and
1 5(,-), 5(1)

» S is a projection matrix, which projects onto a uniformly
random subspace

2
IF’{’HSUHQ - ,/';’ > t} <2ez"

» Applying union bound for all points i,j = 1,...,d gives a
similar result

» Random i.i.d. S matrices are easier to generate and
approximately orthogonal: ESTS = |



Computationally cheaper random matrices

» Gaussian Sjj = T N(0,1)
» Rademacher
+1 with probability -
sj=4 m TP (1)
—ﬁ with probability %

+\/E with probability
0 with probability

NIR WIN NI
—~~
N
N

7\/% with probability

» other sparse matrices (e.g. one non-zero per column)

» Fourier transform based matrices



Optimality of the JL Embedding

> Let e € (0, %) Given any set of points {xi,...,x,} in R,
there exists a map S : R” — R™ with m = 9€|og(n) such that
|| Sxi — Sx;

||2<1—|—€ (*)

1—-€e<
lIxi — XJ”2

» Can we embed to a smaller dimension?

» maybe using a nonlinear embedding?



Optimality of the JL Embedding

> Let e € (0, %) Given any set of points {xi,...,x,} in R,
there exists a map S : R” — R™ with m = 9€|og(n) such that

<1l+e (*)

Ixi = xlI3

» Can we embed to a smaller dimension?

v

maybe using a nonlinear embedding?
> No
Johnson-Lindenstrauss Embedding is optimal

» There exists a set of n points {xi, ..., x,} such that any

linear /nonlinear embedding satisfying (x) must have
m > O(Ioegzn) .

Optimality of the Johnson-Lindenstrauss Lemma, Larsen and Nelson, 2016



Applications of JL Embeddings

» General idea: run algorithms on Sxi, ..., Sx, € R™ instead of

X1y en

» Xn

> Examples:

vVVYyVYYVY

v

approximate nearest neighbor search

estimating norms and frequency moments

regression

classification

randomized matrix operations (matrix multiplication,
decomposition etc)

optimization



Approximate Nearest Neighbors

> Given a point set P = {x1,...,x,} € RY
» and a query point g € R
» Find an e-approximate nearest neighbor to q from P




Estimating p-norms

» Streaming data
Xe41 = X¢ + 0t
» Estimate ||x||2

» second moment



Estimating p-norms

» Streaming data
Xt41 = Xt + Ot
» Estimate ||x||2

v

second moment

> linear sketch
Generate S randomly such that ESTS =/
Let y; = Sx;
v = Sx¢ + S0t

> [1Sy[3 ~ |xI3



Estimating p-norms

» Streaming data
Xt41 = Xt + 0t

» Estimate ||x||2

v

second moment

> linear sketch
Generate S randomly such that ESTS =/
Let y; = Sx;
v = Sx¢ + S0t

> [1Sy[3 ~ |xI3

» Can also be extended to || x|



Music similarity prediction

» Predict the similarity score € [0, 1] between 30 second tracks

» Frequency based features from each 200ms segment results in
10° features

» OLS: randomly pick m features
» COLS: apply random projection to dimension m

Fard et al. Compressed Least-Squares Regression on Sparse Spaces, 2012



Music similarity prediction
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» Predict the similarity score € [0, 1] between 30 second tracks

» Frequency based features from each 200ms segment results in
10° features

OLS: randomly pick m features

v

» COLS: apply random projection to dimension m

Fard et al. Compressed Least-Squares Regression on Sparse Spaces, 2012



Random Projection for Approximate Matrix Multiplication

» matrices A and B
output AST SB where S is a random projection matrix



Random Projection for Approximate Matrix Multiplication

» matrices A and B
output AST SB where S is a random projection matrix
» need to characterize ||Sx||3 — ||x||3 for vectors x

» Definition: (¢,d, p) JL moment property

E|[Sx[3 - 1| < €Ps

for any unit norm x where p > 2



Random Projection for Approximate Matrix Multiplication

» matrices A and B

output AST SB where S is a random projection matrix
» need to characterize ||Sx||3 — ||x||3 for vectors x
» Definition: (¢,d, p) JL moment property

E|[Sx[3 - 1| < €Ps
for any unit norm x where p > 2
> SeR™ ~ ﬁxrandom i.i.d. sub-Gaussian, e.g., 1, or
N(0,1) with m = & log # satisfies (e, d,log 1) JL moment
property



Random Projection for Approximate Matrix Multiplication

» matrices A and B

output AST SB where S is a random projection matrix
» need to characterize ||Sx||3 — ||x||3 for vectors x
» Definition: (¢,d, p) JL moment property

E|[Sx[3 - 1| < €Ps

for any unit norm x where p > 2

> SeR™ ~ ﬁxrandom i.i.d. sub-Gaussian, e.g., 1, or
N(0,1) with m = & log # satisfies (e, d,log 1) JL moment
property

> SeR™ ~ ﬁxCountSketch matrix (one nonzero per
column, which is 1 at a uniformly random Iocation) with
m = % satisfies (¢,0,2) JL moment property



Random Projection for Approximate Matrix Multiplication

| 2

>

matrices A and B

output AST SB where S is a random projection matrix
need to characterize ||Sx||3 — ||x||3 for vectors x
Definition: (€, 0, p) JL moment property

E|[Sx[3 - 1| < €Ps
for any unit norm x where p > 2
SeR™ ~ ﬁxrandom i.i.d. sub-Gaussian, e.g., 1, or
N(0,1) with m = & log # satisfies (e, d,log 1) JL moment
property
SeR™M ~ ﬁxCountSketch matrix (one nonzero per
column, which is 1 at a uniformly random Iocation) with
m = % satisfies (¢,0,2) JL moment property
SeR™M ~ ﬁxFast JL Transform with m = %Iog%
satisfies (¢, d,log §) JL moment property



Approximating inner products

» Lemma
E|[Sx[3 —1|° < ePs

for any unit norm x implies that
P
E ‘XTSTSy — xTy‘ < 3€PH

since

;o1

2 2 2
xty =5 (IIxll2+ llyllz = lIx = yI2)

N |

1
xTSTSy = 2 (ISx[13 + lISyll3 — IS(x — ¥)II3)

N |



Random Projection for Approximate Matrix Multiplication

> Let C = ASTSB

P[|AB — Cllr > 3¢||AllFlIBlF] = [IAB = ClI% > (3¢)P||AlIRIIBII7]
E|AB — C||?
= (BellAlllIBlIF)P

> let a; = A(,-) and b; = B(,-)

2
|AB — Cl[E =" |(sa)T(Sby) — o] by

Iy



Random Projection for Approximate Matrix Multiplication

> Let C = ASTSB

P[|AB — Cllr > 3¢||AllFlIBlF] = [IAB = ClI% > (3¢)P||AlIRIIBII7]
E|AB — C||?
= (BellAlllIBlIF)P

> let a; = A(,-) and b; = B(,-)

2
|AB — Cl[E =" |(sa)T(Sby) — o] by

Iy

» we can normalize H:W Hlﬁ)ﬁ and apply JL moment property
to get

PIIAB — Cl[r > 3¢[|AllF[IBl|F] < &



Final error bound for random projection
> Let the approximate product of AB be C = ASTSB

PIIAB = Cllr > 3¢[|AllFlBllF] < 6

v

Follows from JL Moment property
> ScRM™N ~ \}xrandom i.i.d. sub-Gaussian, e.g., +1, or

Vm
N(0,1) with m = & log %
> SeR™ ~ ﬁxCountSketch matrix (one nonzero per

column, which is 1 at a uniformly random location) with

— <
m=2s

1 - _ 1
> S eR™M A~ ﬁxFast JL Transform with m = log 5



Final error bound for random projection
> Let the approximate product of AB be C = ASTSB

PIIAB = Cllr > 3¢[|AllFlBllF] < 6

v

Follows from JL Moment property
> ScRM™N ~ \}xrandom i.i.d. sub-Gaussian, e.g., +1, or

Vm
N(0,1) with m = & log %
> SeR™ ~ ﬁxCountSketch matrix (one nonzero per

column, which is 1 at a uniformly random location) with
o
€28

1 - _ 1
> S eR™M A~ ﬁxFast JL Transform with m = log 5

m =

v

Sparse JL and Fast JL are more efficient

» advantages: doesn't require any knowledge about matrices A
and B (oblivious)

» optimal sampling probabilities depend on the column/row

norms of A and B



Questions?



