EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Thursday, Jan 23 2020

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Randomized Linear Algebra Lecture 6: Johnson Lindenstrauss Lemma and Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Dimension Reduction

- map a high dimensional vector to low dimensions such that certain properites are preserved
- examples so far:
- ► Approximate Matrix Multiplication AS^TSB ≈ AB where S is random

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Freivalds Algorithm ABr Mr where r is random
- Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

Dimension Reduction

- map a high dimensional vector to low dimensions such that certain properites are preserved
- examples so far:
- ▶ Approximate Matrix Multiplication AS^TSB ≈ AB where S is random
- Freivalds Algorithm ABr Mr where r is random
- Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

- Generic dimension reduction problem
- ▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < d
- another instance is Principal Component Analysis

Randomized Dimension Reduction

▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Linear transformation $y_i = Sx_i$ for i = 1, ..., n
- S is chosen randomly

Randomized Dimension Reduction

▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < d

- Linear transformation $y_i = Sx_i$ for i = 1, ..., n
- ► *S* is chosen randomly
- ► Approximate Matrix Multiplication: AS^TSB ≈ AB where S is random matrix

Geometry of Random Projections

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Johnson Lindenstrauss Lemma

▶ Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$1 - \epsilon \le \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon$$

Johnson Lindenstrauss Lemma

▶ Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{e^2 - e^3}$ such that

$$1 - \epsilon \le rac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon$$

Note that the target dimension m is independent of the original dimension d, and depends only on the number of points n and the accuracy parameter.

Johnson Lindenstrauss Lemma

▶ Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{e^2 - e^3}$ such that

$$1 - \epsilon \le rac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon$$

- Note that the target dimension *m* is independent of the original dimension *d*, and depends only on the number of points *n* and the accuracy parameter.
- ▶ more surprises: picking an $m \times d$ random matrix $S = \frac{1}{\sqrt{m}}G$ with $G_{ij} \sim N(0, 1)$ standard normal works with high probability!

Johnson Lindenstrauss (JL) Lemma

▶ JL Lemma:

$$\mathbb{P}[||Su_{ij}||_2^2 \in (1 \pm \epsilon) \text{ for all } i, j \in \{1, ..., n\}] \ge 1 - \delta$$

where $\delta \in (0, 1)$ for large enough *m*

- We need to show $||Su_{ij}||_2^2$ is concentrated around 1
- **Lemma** Let $S_{ij} \sim \frac{1}{\sqrt{m}} N(0,1)$ and *u* be any fixed vector. Then

$$\mathbb{E}\|Su\|_2^2 = \|u\|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- implies that the distance between two points is preserved in expectation
- Proof:

Concentration of Measure for Uniform Distribution on the Sphere

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Suppose m = 1, i.e., we project to dimension one
- S is a row vector $S = g^T \in \mathbb{R}^d \sim N(0, I)$
- ▶ $\mathbb{P}\left[|g^{\mathsf{T}}u| \ge \epsilon\right] = \mathbb{P}\left[|g^{\mathsf{T}}e_1| \ge \epsilon\right] = \mathbb{P}\left[|g_1| \ge \epsilon\right]$ where e_1 is the first ordinary basis vector

Concentration of Measure for Uniform Distribution on the Sphere

- Suppose m = 1, i.e., we project to dimension one
- S is a row vector $S = g^T \in \mathbb{R}^d \sim N(0, I)$
- ▶ $\mathbb{P}\left[|g^{T}u| \ge \epsilon\right] = \mathbb{P}\left[|g^{T}e_{1}| \ge \epsilon\right] = \mathbb{P}\left[|g_{1}| \ge \epsilon\right]$ where e_{1} is the first ordinary basis vector
- Lemma: $\mathbb{P}\left[|s_1| \geq \frac{t \|g\|_2}{\sqrt{d}}\right] \leq 2e^{-\frac{t^2}{2}}$.
- Note that $\frac{g}{\|g\|_2}$ is distributed uniformly on the unit sphere

Concentration of Measure for Uniform Distribution on the Sphere

- Back to the general case $S \in \mathbb{R}^{m \times d}$
- Consider the probability that ||Su||²₂ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$\mathbb{P}\left[\|\mathsf{S} u\|_2^2 \ge (1+\epsilon)\|u\|_2^2\right] \le e^{-(\epsilon^2 - \epsilon^3)\frac{n}{4}}$$

- Back to the general case $S \in \mathbb{R}^{m \times d}$
- Consider the probability that ||Su||²₂ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$\mathbb{P}\left[\|\mathsf{S} u\|_2^2 \ge (1+\epsilon)\|u\|_2^2\right] \le e^{-(\epsilon^2 - \epsilon^3)\frac{m}{4}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶
$$\mathbb{P}\left[\|Su_{ij}\|_{2}^{2} \ge (1+\epsilon)\|u_{ij}\|_{2}^{2}\right] \le \sum_{i,j} e^{-(\epsilon^{2}-\epsilon^{3})\frac{m}{4}} = n^{2}e^{-(\epsilon^{2}-\epsilon^{3})\frac{m}{4}}$$

- Back to the general case $S \in \mathbb{R}^{m imes d}$
- Consider the probability that ||Su||²₂ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$\mathbb{P}\left[\|\mathsf{S} u\|_2^2 \ge (1+\epsilon)\|u\|_2^2\right] \le e^{-(\epsilon^2 - \epsilon^3)\frac{m}{4}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶
$$\mathbb{P}\left[\|Su_{ij}\|_{2}^{2} \ge (1+\epsilon)\|u_{ij}\|_{2}^{2}\right] \le \sum_{i,j} e^{-(\epsilon^{2}-\epsilon^{3})\frac{m}{4}} = n^{2}e^{-(\epsilon^{2}-\epsilon^{3})\frac{m}{4}}$$

Set error probability $= \frac{1}{2} = n^2 e^{-(\epsilon^2 - \epsilon^3)\frac{m}{4}}$ $\blacktriangleright m = \frac{9 \log n}{\epsilon^2 - \epsilon^3}$

- Back to the general case $S \in \mathbb{R}^{m imes d}$
- Consider the probability that ||Su||²₂ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$\mathbb{P}\left[\|\mathsf{Su}\|_2^2 \ge (1+\epsilon)\|u\|_2^2\right] \le e^{-(\epsilon^2 - \epsilon^3)\frac{m}{4}}$$

▶
$$\mathbb{P}\left[\|Su_{ij}\|_{2}^{2} \ge (1+\epsilon)\|u_{ij}\|_{2}^{2}\right] \le \sum_{i,j} e^{-(\epsilon^{2}-\epsilon^{3})\frac{m}{4}} = n^{2}e^{-(\epsilon^{2}-\epsilon^{3})\frac{m}{4}}$$

Set error probability $= \frac{1}{2} = n^2 e^{-(\epsilon^2 - \epsilon^3)\frac{m}{4}}$ $\blacktriangleright m = \frac{9 \log n}{\epsilon^2 - \epsilon^3}$

for smaller error probability $0.01 = n^2 e^{-(\epsilon^2 - \epsilon^3)\frac{m}{4}}$ $m = \frac{\text{constant} \times \log n}{\epsilon^2 - \epsilon^3}$ True 'projections': random subspaces also work

- Pick $S_{(i)}$ uniformly random on the unit sphere
- Pick $S_{(i+1)}$ uniformly random on the unit sphere and $\perp S_{(i)}, ..., S_{(1)}$
- S is a projection matrix, which projects onto a uniformly random subspace

$$\mathbb{P}\left\{\left|\|Su\|_2-\sqrt{\frac{m}{d}}\right|>t\right\}\leq 2e^{\frac{-t^2d}{2}}$$

- Applying union bound for all points i, j = 1, ..., d gives a similar result
- Random i.i.d. S matrices are easier to generate and approximately orthogonal: ES^TS = I

Computationally cheaper random matrices

$$S_{ij} = egin{cases} +rac{1}{m} & ext{with probability } rac{1}{\sqrt{m}} \ -rac{1}{\sqrt{m}} & ext{with probability } rac{1}{2} \end{cases}$$
 (

Bernoulli-Rademacher

$$S_{ij} = egin{cases} +rac{\sqrt{3}}{\sqrt{m}} & ext{with probability }rac{1}{2} \ 0 & ext{with probability }rac{2}{3} \ -rac{\sqrt{3}}{\sqrt{m}} & ext{with probability }rac{1}{2} \end{cases}$$

- ▶ other sparse matrices (e.g. one non-zero per column)
- Fourier transform based matrices

1)

(2)

Optimality of the JL Embedding

▶ Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$1 - \epsilon \le \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon \qquad (\star)$$

- Can we embed to a smaller dimension?
- maybe using a nonlinear embedding?

Optimality of the JL Embedding

▶ Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$1 - \epsilon \le \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon \qquad (\star)$$

- Can we embed to a smaller dimension?
- maybe using a nonlinear embedding?

No

Johnson-Lindenstrauss Embedding is optimal

There exists a set of n points {x₁,...,x_n} such that any linear/nonlinear embedding satisfying (★) must have m ≥ O(^{log n}/_{ε²}).

Optimality of the Johnson-Lindenstrauss Lemma, Larsen and Nelson, 2016

Applications of JL Embeddings

- General idea: run algorithms on $Sx_1, ..., Sx_n \in \mathbb{R}^m$ instead of $x_1, ..., x_n$
- Examples:

- approximate nearest neighbor search
- estimating norms and frequency moments
- regression
- classification
- randomized matrix operations (matrix multiplication, decomposition etc)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- optimization

Approximate Nearest Neighbors

- Given a point set $P = \{x_1, ..., x_n\} \in \mathbb{R}^d$
- ▶ and a query point $q \in \mathbb{R}^d$
- Find an ϵ -approximate nearest neighbor to q from P

Estimating p-norms

Streaming data

$$x_{t+1} = x_t + \delta_t$$

- ► Estimate $||x||_2$
- second moment

(ロ)、(型)、(E)、(E)、 E) の(()

Estimating p-norms

Streaming data

$$x_{t+1} = x_t + \delta_t$$

- ► Estimate $||x||_2$
- second moment

linear sketch

Generate *S* randomly such that $\mathbb{E}S^T S = I$ Let $y_t = Sx_t$ $y_t = Sx_t + S\delta_t$ $||Sy||_2^2 \approx ||Sx||_2^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Estimating p-norms

Streaming data

$$x_{t+1} = x_t + \delta_t$$

- Estimate ||x||₂
- second moment

linear sketch

Generate S randomly such that $\mathbb{E}S^T S = I$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let
$$y_t = Sx_t$$

$$y_t = Sx_t + S\delta_t$$

- $||Sy||_2^2 \approx ||Sx||_2^2$
- Can also be extended to $||x||_p$

Music similarity prediction

- ▶ Predict the similarity score \in [0,1] between 30 second tracks
- Frequency based features from each 200ms segment results in 10⁶ features

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- OLS: randomly pick *m* features
- COLS: apply random projection to dimension m

Fard et al. Compressed Least-Squares Regression on Sparse Spaces, 2012

Music similarity prediction

- ▶ Predict the similarity score \in [0,1] between 30 second tracks
- Frequency based features from each 200ms segment results in 10⁶ features

э

- OLS: randomly pick *m* features
- COLS: apply random projection to dimension m

Fard et al. Compressed Least-Squares Regression on Sparse Spaces, 2012

matrices A and B output AS^TSB where S is a random projection matrix

matrices A and B

output AS^TSB where S is a random projection matrix

- need to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$\mathbb{E}\left|\|Sx\|_{2}^{2}-1\right|^{p} \leq \epsilon^{p}\delta$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for any unit norm x where $p \ge 2$

matrices A and B

output AS^TSB where S is a random projection matrix

- need to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$\mathbb{E}\left|\|Sx\|_{2}^{2}-1\right|^{p} \leq \epsilon^{p}\delta$$

for any unit norm x where $p \ge 2$

• $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{1}{\delta})$ JL moment property

matrices A and B

output AS^TSB where S is a random projection matrix

- need to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$\mathbb{E}\left|\|Sx\|_{2}^{2}-1\right|^{p} \leq \epsilon^{p}\delta$$

for any unit norm x where $p \ge 2$

- $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{1}{\delta})$ JL moment property
- S ∈ ℝ^{m×n} ~ ¹/_{√m}×CountSketch matrix (one nonzero per column, which is ±1 at a uniformly random location) with m = ^{c₂}/_{ε²δ} satisfies (ε, δ, 2) JL moment property

matrices A and B

output AS^TSB where S is a random projection matrix

- need to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$\mathbb{E}\left|\|Sx\|_{2}^{2}-1\right|^{p} \leq \epsilon^{p}\delta$$

for any unit norm x where $p \ge 2$

- $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{1}{\delta})$ JL moment property
- S ∈ ℝ^{m×n} ~ ¹/_{√m}×CountSketch matrix (one nonzero per column, which is ±1 at a uniformly random location) with m = ^{c₂}/_{ε²δ} satisfies (ε, δ, 2) JL moment property
- ► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{Fast JL Transform with } m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{n}{\delta})$ JL moment property

Approximating inner products

Lemma

$$\mathbb{E}\left|\|Sx\|_{2}^{2}-1\right|^{p} \leq \epsilon^{p}\delta$$

for any unit norm x implies that

$$\mathbb{E}\left|x^{\mathsf{T}}S^{\mathsf{T}}Sy - x^{\mathsf{T}}y\right|^{p} \leq 3\epsilon^{p}\delta$$

since

$$x^{\mathsf{T}}y = \frac{1}{2} \left(\|x\|_2^2 + \|y\|_2^2 - \|x - y\|_2^2 \right)$$
$$x^{\mathsf{T}}S^{\mathsf{T}}Sy = \frac{1}{2} \left(\|Sx\|_2^2 + \|Sy\|_2^2 - \|S(x - y)\|_2^2 \right)$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

► Let
$$C = AS^T SB$$

$$\mathbb{P}[\|AB - C\|_F > 3\epsilon \|A\|_F \|B\|_F] = [\|AB - C\|_F^p > (3\epsilon)^p \|A\|_F^p \|B\|_F^p]$$

$$\leq \frac{\mathbb{E}\|AB - C\|_F^p}{(3\epsilon \|A\|_F \|B\|_F)^p}$$

• Let
$$a_i = A_{(i)}$$
 and $b_i = B_{(i)}$
 $||AB - C||_F^2 = \sum_{ij} |(Sa_i)^T (Sb_j) - a_i^T b_j|^2$

► Let
$$C = AS^T SB$$

$$\mathbb{P}[\|AB - C\|_F > 3\epsilon \|A\|_F \|B\|_F] = [\|AB - C\|_F^p > (3\epsilon)^p \|A\|_F^p \|B\|_F^p]$$

$$\leq \frac{\mathbb{E}\|AB - C\|_F^p}{(3\epsilon \|A\|_F \|B\|_F)^p}$$

• Let
$$a_i = A_{(i)}$$
 and $b_i = B_{(i)}$
 $||AB - C||_F^2 = \sum_{ij} |(Sa_i)^T (Sb_j) - a_i^T b_j|^2$

▶ we can normalize $\frac{a_i}{\|a_i\|_2}$, $\frac{b_i}{\|b_i\|_2}$ and apply JL moment property to get

$$\mathbb{P}\left[\|AB - C\|_{F} > 3\epsilon \|A\|_{F} \|B\|_{F}\right] \leq \delta$$

Final error bound for random projection

• Let the approximate product of AB be $C = AS^T SB$

$$\mathbb{P}\left[\|AB - C\|_{F} > 3\epsilon \|A\|_{F} \|B\|_{F}\right] \leq \delta$$

Follows from JL Moment property

• $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$

► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is ±1 at a uniformly random location) with <math>m = \frac{c_2}{\epsilon^2 \delta}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{Fast JL Transform with } m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}$$

Final error bound for random projection

• Let the approximate product of AB be $C = AS^T SB$

$$\mathbb{P}\left[\|AB - C\|_{F} > 3\epsilon \|A\|_{F} \|B\|_{F}\right] \leq \delta$$

Follows from JL Moment property

• $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$

- $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is <math>\pm 1$ at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$
- $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{Fast JL Transform with } m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}$
- Sparse JL and Fast JL are more efficient
- advantages: doesn't require any knowledge about matrices A and B (oblivious)
- optimal sampling probabilities depend on the column/row norms of A and B

Questions?