EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Thursday, Jan 23 2020

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Randomized Linear Algebra Lecture 6: Johnson Lindenstrauss Lemma and **Applications**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Dimension Reduction

- \triangleright map a high dimensional vector to low dimensions such that certain properites are preserved
- \blacktriangleright examples so far:
- ▶ Approximate Matrix Multiplication $AS^TSB \approx AB$ where S is random

- \triangleright Freivalds Algorithm ABr Mr where r is random
- Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

Dimension Reduction

- \triangleright map a high dimensional vector to low dimensions such that certain properites are preserved
- \blacktriangleright examples so far:
- ▶ Approximate Matrix Multiplication $AS^TSB \approx AB$ where S is random
- \triangleright Freivalds Algorithm ABr Mr where r is random
- Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

- \blacktriangleright Generic dimension reduction problem
- ► Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where $m < d$
- \blacktriangleright another instance is Principal Component Analysis

Randomized Dimension Reduction

► Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where $m < d$

KORKARYKERKER POLO

- lacktriangleright Linear transformation $y_i = Sx_i$ for $i = 1, ..., n$
- \triangleright S is chosen randomly

Randomized Dimension Reduction

► Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where $m < d$

- lacktriangleright Linear transformation $y_i = Sx_i$ for $i = 1, ..., n$
- \triangleright S is chosen randomly
- Approximate Matrix Multiplication: $AS^TSB \approx AB$ where S is random matrix

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Geometry of Random Projections

Kロトメ部トメミトメミト ミニのQC

Johnson Lindenstrauss Lemma

let $\epsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$). Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S\,:\,\mathbb{R}^n\rightarrow\mathbb{R}^m$ with $m=\frac{9\log(n)}{\epsilon^2-\epsilon^3}$ $\frac{\log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$
1-\epsilon \leq \frac{\|Sx_i-Sx_j\|_2^2}{\|x_i-x_j\|_2^2} \leq 1+\epsilon
$$

Johnson Lindenstrauss Lemma

let $\epsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$). Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S\,:\,\mathbb{R}^n\rightarrow\mathbb{R}^m$ with $m=\frac{9\log(n)}{\epsilon^2-\epsilon^3}$ $\frac{\log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$
1-\epsilon \le \frac{\|Sx_i-Sx_j\|_2^2}{\|x_i-x_j\|_2^2} \le 1+\epsilon
$$

 \blacktriangleright Note that the target dimension m is **independent of the** original dimension d , and depends only on the number of points n and the accuracy parameter.

KELK KØLK VELKEN EL 1990

Johnson Lindenstrauss Lemma

let $\epsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$). Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S\,:\,\mathbb{R}^n\rightarrow\mathbb{R}^m$ with $m=\frac{9\log(n)}{\epsilon^2-\epsilon^3}$ $\frac{\log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$
1-\epsilon \le \frac{\|Sx_i-Sx_j\|_2^2}{\|x_i-x_j\|_2^2} \le 1+\epsilon
$$

- \blacktriangleright Note that the target dimension m is **independent of the** original dimension d , and depends only on the number of **points** *n* and the accuracy parameter.
- ▶ more surprises: picking an $m \times d$ random matrix $S = \frac{1}{\sqrt{2}}$ $\frac{1}{\overline{m}}$ G with $G_{ii} \sim N(0, 1)$ standard normal works with high probability!

KORKAR KERKER SAGA

Johnson Lindenstrauss (JL) Lemma

\n- Define
$$
u_{ij} \triangleq \frac{x_i - x_j}{\|x_i - x_j\|_2}
$$
.
\n- note that $\|u_{ij}\|_2 = 1$.
\n

► JL Lemma:
\n
$$
\mathbb{P}[||Su_{ij}||_2^2 \in (1 \pm \epsilon) \text{ for all } i, j \in \{1, ..., n\}] \ge 1 - \delta
$$
\nwhere $\delta \in (0, 1)$ for large enough *m*

KOKK@KKEKKEK E 1990

- \blacktriangleright We need to show $\|S_{uj}\|_2^2$ is concentrated around 1
- ► Lemma Let $S_{ij} \sim \frac{1}{\sqrt{N}}$ $\frac{1}{m}N(0,1)$ and u be any fixed vector. Then

$$
\mathbb{E}||Su||_2^2 = ||u||
$$

- \triangleright implies that the distance between two points is preserved in expectation
- \blacktriangleright Proof:

Concentration of Measure for Uniform Distribution on the **Sphere**

- Suppose $m = 1$, i.e., we project to dimension one ► S is a row vector $S = g^T \in \mathbb{R}^d \sim N(0, I)$
- $\blacktriangleright \mathbb{P} \left[|g^T u| \geq \epsilon \right] = \mathbb{P} \left[|g^T e_1| \geq \epsilon \right] = \mathbb{P} \left[|g_1| \geq \epsilon \right]$ where e_1 is the first ordinary basis vector

Concentration of Measure for Uniform Distribution on the **Sphere**

- Suppose $m = 1$, i.e., we project to dimension one
- ► S is a row vector $S = g^T \in \mathbb{R}^d \sim N(0, I)$
- $\blacktriangleright \mathbb{P} \left[|g^T u| \geq \epsilon \right] = \mathbb{P} \left[|g^T e_1| \geq \epsilon \right] = \mathbb{P} \left[|g_1| \geq \epsilon \right]$ where e_1 is the first ordinary basis vector
- ▶ Lemma: $\mathbb{P}\left[|s_1|\geq \frac{t||g||_2}{\sqrt{d}}\right]$ d $\Big] \leq 2e^{-\frac{t^2}{2}}$.
- Note that $\frac{g}{\|g\|_2}$ is distributed uniformly on the unit sphere

KELK KØLK VELKEN EL 1990

Concentration of Measure for Uniform Distribution on the Sphere

2 I Lemma: P h i − ^t |g1| ≥ ^t^k gk² ≤ 2e ² . √ d I Note that ^g is distributed uniformly on the unit sphere kgk² q I Pythagorean theorem: ^t 2 2 2 t ^d + R cap = 1 implies Rcap = 1 − d ^d−¹ ^q 2 1− ^t area of the spherical cap I P h i g1 t | | ≥ √ ≤ area of the sphere [≤] d kgk² d−1 d 1 I using the fact (1 − x ⁿ ≤ e [−]^x we get) n 2 h i − ^t P g1 t | | ≥ √ ≤ 2e ² .kgk² d

- ▶ Back to the general case $S \in \mathbb{R}^{m \times d}$
- Sonsider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$
\mathbb{P}\left[\|S u\|_2^2 \geq (1+\epsilon)\|u\|_2^2\,\right] \leq e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ Back to the general case $S \in \mathbb{R}^{m \times d}$
- Sonsider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$
\mathbb{P}\left[\|S u\|_2^2 \geq (1+\epsilon)\|u\|_2^2\,\right] \leq e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\triangleright \mathbb{P} \left[\| S u_{ij} \|_2^2 \ge (1+\epsilon) \| u_{ij} \|_2^2 \right] \le \sum_{i,j} e^{-(\epsilon^2 - \epsilon^3) \frac{m}{4}} = n^2 e^{-(\epsilon^2 - \epsilon^3) \frac{m}{4}}
$$

- ▶ Back to the general case $S \in \mathbb{R}^{m \times d}$
- Sonsider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$
\mathbb{P}\left[\|S u\|_2^2 \geq (1+\epsilon)\|u\|_2^2\,\right] \leq e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}
$$

$$
\triangleright \mathbb{P}\left[\|Su_{ij}\|_2^2 \geq (1+\epsilon)\|u_{ij}\|_2^2\right] \leq \sum_{i,j} e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}} = n^2 e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}
$$

Set error probability
$$
=
$$
 $\frac{1}{2} = n^2 e^{-(\epsilon^2 - \epsilon^3) \frac{m}{4}}$
\n $\triangleright m = \frac{9 \log n}{\epsilon^2 - \epsilon^3}$

- ▶ Back to the general case $S \in \mathbb{R}^{m \times d}$
- Sonsider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation

$$
\mathbb{P}\left[\|S u\|_2^2 \geq (1+\epsilon)\|u\|_2^2\right] \leq e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}
$$

KELK KØLK VELKEN EL 1990

$$
\triangleright \mathbb{P}\left[\|Su_{ij}\|_2^2 \geq (1+\epsilon)\|u_{ij}\|_2^2\right] \leq \sum_{i,j} e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}} = n^2 e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}
$$

Set error probability
$$
=
$$
 $\frac{1}{2} = n^2 e^{-(\epsilon^2 - \epsilon^3) \frac{m}{4}}$
\n $\triangleright m = \frac{9 \log n}{\epsilon^2 - \epsilon^3}$

for smaller error probability $0.01 = n^2 e^{-(\epsilon^2-\epsilon^3) \frac{m}{4}}$ $\blacktriangleright m = \frac{\text{constant} \times \log n}{\epsilon^2 - \epsilon^3}$ $\epsilon^2-\epsilon^3$

True 'projections': random subspaces also work

- \triangleright Pick $S_{(i)}$ uniformly random on the unit sphere
- \triangleright Pick $S_{(i+1)}$ uniformly random on the unit sphere and $\perp S_{(i)},...S_{(1)}$
- \triangleright S is a projection matrix, which projects onto a uniformly random subspace

$$
\mathbb{P}\left\{\left|\|Su\|_2-\sqrt{\frac{m}{d}}\right|>t\right\}\leq 2e^{\frac{-t^2d}{2}}
$$

KID KA KERKER KID KO

- Applying union bound for all points $i, j = 1, ..., d$ gives a similar result
- \triangleright Random i.i.d. S matrices are easier to generate and approximately orthogonal: $\mathbb{E} S^{\mathcal{T}} S = I$

Computationally cheaper random matrices

S Gaussian
$$
S_{ij} = \frac{1}{\sqrt{m}}N(0, 1)
$$

I Rademacher

$$
S_{ij} = \begin{cases} +\frac{1}{m} & \text{with probability } \frac{1}{\sqrt{m}} \\ -\frac{1}{\sqrt{m}} & \text{with probability } \frac{1}{2} \end{cases}
$$
(1)

(2)

 \blacktriangleright Bernoulli-Rademacher

$$
S_{ij} = \begin{cases} +\frac{\sqrt{3}}{\sqrt{m}} & \text{with probability } \frac{1}{2} \\ 0 & \text{with probability } \frac{2}{3} \\ -\frac{\sqrt{3}}{\sqrt{m}} & \text{with probability } \frac{1}{2} \end{cases}
$$

- \triangleright other sparse matrices (e.g. one non-zero per column)
- \blacktriangleright Fourier transform based matrices

Optimality of the JL Embedding

let $\epsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$). Given any set of points $\{x_1,...,x_n\}$ in \mathbb{R}^d , there exists a map $S\,:\,\mathbb{R}^n\rightarrow\mathbb{R}^m$ with $m=\frac{9\log(n)}{\epsilon^2-\epsilon^3}$ $\frac{\log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$
1-\epsilon \leq \frac{\|Sx_i-Sx_j\|_2^2}{\|x_i-x_j\|_2^2} \leq 1+\epsilon \qquad (\star)
$$

- \triangleright Can we embed to a smaller dimension?
- \triangleright maybe using a **nonlinear** embedding?

Optimality of the JL Embedding

let $\epsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$). Given any set of points $\{x_1,...,x_n\}$ in \mathbb{R}^d , there exists a map $S\,:\,\mathbb{R}^n\rightarrow\mathbb{R}^m$ with $m=\frac{9\log(n)}{\epsilon^2-\epsilon^3}$ $\frac{\log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$
1-\epsilon \leq \frac{\|Sx_i-Sx_j\|_2^2}{\|x_i-x_j\|_2^2} \leq 1+\epsilon \qquad (\star)
$$

- \triangleright Can we embed to a smaller dimension?
- \triangleright maybe using a **nonlinear** embedding?

 \blacktriangleright No

Johnson-Lindenstrauss Embedding is optimal

Interm the rexists a set of n points $\{x_1, ..., x_n\}$ such that any linear/nonlinear embedding satisfying $(*)$ must have $m \geq O(\frac{\log n}{\epsilon^2})$ $\frac{\log n}{\epsilon^2}$).

KORKARYKERKER POLO

Optimality of the Johnson-Lindenstrauss Lemma, Larsen and Nelson, 2016

Applications of JL Embeddings

- ► General idea: run algorithms on $S_{X_1},..., S_{X_n} \in \mathbb{R}^m$ instead of $X_1, ..., X_n$
- \blacktriangleright Examples:

- \blacktriangleright approximate nearest neighbor search
- \blacktriangleright estimating norms and frequency moments
- \blacktriangleright regression
- \blacktriangleright classification
- \blacktriangleright randomized matrix operations (matrix multiplication, decomposition etc)

KORKARYKERKER POLO

 \blacktriangleright optimization

 \blacktriangleright ...

Approximate Nearest Neighbors

- ► Given a point set $P = \{x_1, ..., x_n\} \in \mathbb{R}^d$
- ightharpoon and a query point $q \in \mathbb{R}^d$
- \blacktriangleright Find an ϵ -approximate nearest neighbor to q from P

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Estimating p-norms

 \blacktriangleright Streaming data

$$
x_{t+1} = x_t + \delta_t
$$

- Estimate $||x||_2$
- \blacktriangleright second moment

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Estimating p-norms

 \blacktriangleright Streaming data

$$
x_{t+1} = x_t + \delta_t
$$

- Estimate $||x||_2$
- \blacktriangleright second moment

\blacktriangleright linear sketch

Generate S randomly such that $\mathbb{E}S^{\mathcal{T}}S=I$ $L_{\text{min}} = C_{\text{min}}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Let
$$
y_t = 5x_t
$$

\n $y_t = Sx_t + S\delta_t$
\n $||Sy||_2^2 \approx ||Sx||_2^2$

Estimating p-norms

 \blacktriangleright Streaming data

$$
x_{t+1} = x_t + \delta_t
$$

- Estimate $||x||_2$
- \blacktriangleright second moment

\blacktriangleright linear sketch

Generate S randomly such that $\mathbb{E}S^{\mathcal{T}}S=I$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Let
$$
y_t = Sx_t
$$

$$
y_t = S x_t + S \delta_t
$$

- \blacktriangleright $||S_y||_2^2 \approx ||S_x||_2^2$
- **Can also be extended to** $||x||_p$

Music similarity prediction

- \triangleright Predict the similarity score ∈ [0, 1] between 30 second tracks
- ▶ Frequency based features from each 200ms segment results in 10^6 features

KORKARYKERKER POLO

- \triangleright OLS: randomly pick *m* features
- \triangleright COLS: apply random projection to dimension m

Fard et al. Compressed Least-Squares Regression on Sparse Spaces, 2012

Music similarity prediction

- \triangleright Predict the similarity score ∈ [0, 1] between 30 second tracks
- ▶ Frequency based features from each 200ms segment results in 10^6 features

 2990

- \triangleright OLS: randomly pick *m* features
- \triangleright COLS: apply random projection to dimension m

Fard et al. Compressed Least-Squares Regression on Sparse Spaces, [201](#page-28-0)2
 ADP ADP ADP ADP ADP ADP ADP

 \blacktriangleright matrices A and B

output AS^TSB where S is a random projection matrix

 \blacktriangleright matrices A and B

output AS^TSB where S is a random projection matrix

- reed to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$
\mathbb{E}\left|\|Sx\|_2^2-1\right|^p\leq \epsilon^p\delta
$$

KID KA KERKER E VOOR

for any unit norm x where $p > 2$

 \blacktriangleright matrices A and B

output AS^TSB where S is a random projection matrix

- reed to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$
\mathbb{E}\left|\|Sx\|_2^2-1\right|^p\leq \epsilon^p\delta
$$

KORK EXTERNE PROVIDE

for any unit norm x where $p > 2$

 \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{\overline{m}}\times$ random i.i.d. sub-Gaussian, e.g., ± 1 , or $N(0,1)$ with $m=\frac{c_1}{\epsilon^2}\log\frac{1}{\delta}$ satisfies $(\epsilon,\delta,\log\frac{1}{\delta})$ JL moment property

 \blacktriangleright matrices A and B

output AS^TSB where S is a random projection matrix

- reed to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$
\mathbb{E}\left|\|Sx\|_2^2-1\right|^p\leq \epsilon^p\delta
$$

for any unit norm x where $p > 2$

- \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{\overline{m}}\times$ random i.i.d. sub-Gaussian, e.g., ± 1 , or $N(0,1)$ with $m=\frac{c_1}{\epsilon^2}\log\frac{1}{\delta}$ satisfies $(\epsilon,\delta,\log\frac{1}{\delta})$ JL moment property
- \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{m}$ ×CountSketch matrix (one nonzero per column, which is ± 1 at a uniformly random location) with $m=\frac{c_2}{\epsilon^2\delta}$ satisfies $(\epsilon,\delta,2)$ JL moment property

 \blacktriangleright matrices A and B

output AS^TSB where S is a random projection matrix

- reed to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$
\mathbb{E}\left|\|Sx\|_2^2-1\right|^p\leq \epsilon^p\delta
$$

for any unit norm x where $p > 2$

- \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{\overline{m}}\times$ random i.i.d. sub-Gaussian, e.g., ± 1 , or $N(0,1)$ with $m=\frac{c_1}{\epsilon^2}\log\frac{1}{\delta}$ satisfies $(\epsilon,\delta,\log\frac{1}{\delta})$ JL moment property
- \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{m}$ ×CountSketch matrix (one nonzero per column, which is ± 1 at a uniformly random location) with $m=\frac{c_2}{\epsilon^2\delta}$ satisfies $(\epsilon,\delta,2)$ JL moment property
- \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{\overline{m}}\times$ Fast JL Transform with $m=\frac{c_3}{\epsilon}\text{log} \, \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{n}{\delta})$ JL moment property

Approximating inner products

\blacktriangleright Lemma

$$
\mathbb{E}\left|\|Sx\|_2^2-1\right|^p\leq \epsilon^p\delta
$$

for any unit norm x implies that

$$
\mathbb{E}\left|x^{\mathsf{T}}S^{\mathsf{T}}Sy - x^{\mathsf{T}}y\right|^{p} \leq 3\epsilon^{p}\delta
$$

since

$$
x^{\mathsf{T}}y = \frac{1}{2} \left(\|x\|_2^2 + \|y\|_2^2 - \|x - y\|_2^2 \right)
$$

$$
x^{\mathsf{T}}S^{\mathsf{T}}Sy = \frac{1}{2} \left(\|Sx\|_2^2 + \|Sy\|_2^2 - \|S(x - y)\|_2^2 \right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

► Let
$$
C = AS^TSB
$$

\n
$$
\mathbb{P}[||AB - C||_F > 3\epsilon ||A||_F ||B||_F] = [||AB - C||_F^p > (3\epsilon)^p ||A||_F^p ||B||_F^p]
$$
\n
$$
\leq \frac{\mathbb{E}||AB - C||_F^p}{(3\epsilon ||A||_F ||B||_F)^p}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Let
$$
a_i = A_{(i)}
$$
 and $b_i = B_{(i)}$
\n
$$
||AB - C||_F^2 = \sum_{ij} |(Sa_i)^T (Sb_j) - a_i^T b_j|^2
$$

► Let
$$
C = AS^TSB
$$

\n
$$
\mathbb{P}[||AB - C||_F > 3\epsilon ||A||_F ||B||_F] = [||AB - C||_F^p > (3\epsilon)^p ||A||_F^p ||B||_F^p]
$$
\n
$$
\leq \frac{\mathbb{E}||AB - C||_F^p}{(3\epsilon ||A||_F ||B||_F)^p}
$$

Let
$$
a_i = A_{(i)}
$$
 and $b_i = B_{(i)}$
\n
$$
||AB - C||_F^2 = \sum_{ij} |(Sa_i)^T(Sb_j) - a_i^T b_j|^2
$$

ightharpoonup we can normalize $\frac{a_i}{\|a_i\|_2}$, $\frac{b_i}{\|b_i\|_2}$ $\frac{\mathcal{b}_i}{\|\mathcal{b}_i\|_2}$ and apply JL moment property to get

$$
\mathbb{P}\left[\|AB - C\|_{\mathit{F}} > 3\epsilon\|A\|_{\mathit{F}}\|B\|_{\mathit{F}}\right] \leq \delta
$$

KID KA KERKER KID KO

Final error bound for random projection

Let the approximate product of AB be $C = AS^TSB$

$$
\mathbb{P}\left[\|AB - C\|_{\mathsf{F}} > 3\epsilon \|A\|_{\mathsf{F}} \|B\|_{\mathsf{F}}\right] \le \delta
$$

▶ Follows from JL Moment property

 \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{\overline{m}}$ \times random i.i.d. sub-Gaussian, e.g., ± 1 , or $N(0, 1)$ with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$

 \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{L}{m}$ \times CountSketch matrix (one nonzero per column, which is ± 1 at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$

KID KA KERKER E VOOR

$$
\blacktriangleright \ \ S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{Fast JL Transform with } m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}
$$

Final error bound for random projection

Let the approximate product of AB be $C = AS^TSB$

$$
\mathbb{P}\left[\|AB - C\|_{\mathsf{F}} > 3\epsilon \|A\|_{\mathsf{F}} \|B\|_{\mathsf{F}}\right] \leq \delta
$$

▶ Follows from JL Moment property

 \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{\overline{m}}$ \times random i.i.d. sub-Gaussian, e.g., ± 1 , or $N(0, 1)$ with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$

- \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{L}{m}$ \times CountSketch matrix (one nonzero per column, which is ± 1 at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$
- \blacktriangleright $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{m}}\times$ Fast JL Transform with $m=\frac{c_3}{\epsilon}\text{log} \, \frac{1}{\delta}$
- ▶ Sparse JL and Fast JL are more efficient
- \blacktriangleright advantages: doesn't require any knowledge about matrices A and B (oblivious)
- \triangleright optimal sampling probabilities depend on the column/row norms of A and B

Questions?

KOKK@KKEKKEK E 1990