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Recap: Johnson Lindenstrauss Lemma

I Let ε ∈ (0, 12). Given any set of points {x1, ..., xn} in Rd ,

there exists a map S : Rn → Rm with m = 9 log(n)
ε2−ε3 such that

1− ε ≤
‖Sxi − Sxj‖22
‖xi − xj‖22

≤ 1 + ε

I Note that the target dimension m is independent of the
original dimension d , and depends only on the number of
points n and the accuracy parameter.

I more surprises: picking an m × d random matrix S = 1√
m
G

with Gij ∼ N(0, 1) standard normal works with high
probability!
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True ‘projections’: random subspaces also work

I Pick S(i) uniformly random on the unit sphere

I Pick S(i+1) uniformly random on the unit sphere and
⊥ S(i), ...S(1)

I S is a projection matrix, which projects onto a uniformly
random subspace

P
{∣∣∣∣‖Su‖2 −√m

d

∣∣∣∣ > t

}
≤ 2e

−t2d
2

I Applying union bound for all points i , j = 1, ..., d gives a
similar result

I Random i.i.d. S matrices are easier to generate and
approximately orthogonal: ESTS = I



Computationally cheaper random matrices

I Gaussian Sij = 1√
m
N(0, 1)

I Rademacher

Sij =

{
+ 1

m with probability 1√
m

− 1√
m

with probability 1
2

(1)

I Bernoulli-Rademacher

Sij =


+
√
3√
m

with probability 1
2

0 with probability 2
3

−
√
3√
m

with probability 1
2

(2)

I other sparse matrices (e.g. one non-zero per column)

I Fourier transform based matrices



Random projection for Approximate Matrix Multiplication

I Let the approximate product of AB be C = ASTSB

P [‖AB − C‖F > 3ε‖A‖F‖B‖F ] ≤ δ

I Follows from JL Moment property

I S ∈ Rm×n ∼ 1√
m
×random i.i.d. sub-Gaussian, e.g., ±1, or

N(0, 1) with m = c1
ε2

log 1
δ

I S ∈ Rm×n ∼ 1√
m
×CountSketch matrix (one nonzero per

column, which is ±1 at a uniformly random location) with
m = c2

ε2δ

I S ∈ Rm×n ∼ 1√
m
×Fast JL Transform with m = c3

ε log 1
δ

I Sparse JL and Fast JL are more efficient

I advantages: doesn’t require any knowledge about matrices A
and B (oblivious)

I optimal sampling probabilities depend on the column/row
norms of A and B
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Least Squares Regression

I Predict the value of a continuous target variable y

(a1, b1), ..., (an, bn)

ai ∈ Rd and bi ∈ R
I Linear regression f (a) = xTa + x0

I Performance measure: minimum sum of squares

min
x ,x0

1

n

n∑
i=1

(bi − xTai − x0)2

I we can add a regularization term λ||x ||22

min
x ,x0

1

n

n∑
i=1

(bi − xTai − x0)2 + λ||x ||22
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Least Squares Regression

I Loss function:

L(x , x0) = 1
n

∑n
i=1(bi − xTai − x0)2 + λ||x ||22

I ∂
∂x0

L(x , x0) =

optimal x∗0 = 1
n

∑n
i=1(yi − xTai ) = b̄ − xT ā

where ā =
∑n

i=1 ai and b̄ =
∑n

i=1 bi
I plugging x∗0 in L(x , x0)

L(x , x∗0 ) = 1
n

∑n
i=1(bi − b̄ − xT (ai − ā))2 + λ||x ||22

define centered data ãi = ai − ā and b̃i = bi − b̄

min
x
||Ãx − b̃||22 + nλ||x ||22

∂
∂x L(x , x∗0 ) = 2ÃT (Ãx∗ − b̃) + 2nλx∗ = 0

optimal solution x∗ = (ÃT Ã + nλI )−1ÃT b̃
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Autoregressive Models

b[n] = a[n + 1] ≈
∑
k

xka[n − k]

I AR(2) model : two non-zero filter coefficients

a[n + 1] = −x0a[n]− x1a[n − 1]

and error term en = 0

I Example: Sine wave a[n] = sin(αn) satisfies AR(2) model



Autoregressive models

I We can predict future values using

b[n] =
∑
k

a[n − k]xk

slide credit: P. Smaragdis



Least Squares Problems and Random Projection

I Given A ∈ Rn×d and b ∈ Rd

find the best linear fit Ax ≈ b according to

min
x∈Rd

‖Ax − b‖22

I no regularization, i.e., λ = 0

I If A is full column rank then

I xLS = (ATA)−1ATb



Geometry

min
x∈Rd

‖Ax − b‖22



Singular Value Decomposition

I Every A ∈ Rn×n has a singular value decomposition

A = UΣV T

where U ∈ n×r has orthonormal columns

Σ is diagonal with non-increasing non negative entries

V T has orthonormal rows

I Pseudoinverse A† = VΣ−1UT

I Least Square solution
xLS = (ATA)−1ATb = A†b = VΣ−1UTb



Classical Methods for Least Squares

I Direct methods

I Cholesky decomposition: Form ATA and decompose
ATA = RTR where R is upper triangular. Solve normal
equations (ATA)−1 = (RTR)−1ATb

I QR decomposition: A = QR, solve Rx = QTb

I Singular Value Decomposition: xLS = VΣ−1UTb

Direct methods have typically O(nd2) complexity

I Indirect methods

I Gradient descent with momentum (Chebyshev iteration)

I Conjugate Gradient

I Other iterative methods

Indirect methods have typically O(
√
κnd) complexity, where κ

is the condition number



Faster Least Squares Optimization: Random Projection

I Left-sketching

Form SA and Sb where S ∈ Rm×n is a random projection
matrix

I Solve the smaller problem

min
x∈Rd

‖SAx − Sb‖22

I using any classical method.

Direct method complexity md2
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Approximation Result

I Let S ∈ Rm×d be a Johnson-Lindenstrauss Embedding

xLS = arg min
x∈Rd

‖Ax − b‖22︸ ︷︷ ︸
f (x)

x̃ = arg min
x∈Rd

‖SAx − Sb‖22

I If m ≥ constant× rank(A)
ε2

then,

I f (xLS) ≤ f (x̃) ≤ (1 + ε2)f (xLS)

I ‖A(xLS − x̃)‖22 ≤ ε2 with high probability



Gaussian Sketch

I Let S be 1
m× i.i.d. Gaussian. E[STS ] = I

x̃ = arg min
x∈Rd

‖SAx − Sb‖22

I Is E [x̃ ] equal to xLS?



Questions?


