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Projections



Recap: Johnson Lindenstrauss Lemma

> Let e € (0,3). Given any set of points {x1,..., s} in R,
there exists a map S : R” — R™ with m = 9'°g(") such that

% =S5l _ .

1—€e<
Ixi = xill3
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P> Note that the target dimension m is independent of the
original dimension d, and depends only on the number of
points n and the accuracy parameter.



Recap: Johnson Lindenstrauss Lemma

> Let e € (0,3). Given any set of points {x1,..., s} in R,
9Iog(n)

there exists a map S§ : R” — R™ with m = = such that
Le ISi=Sxla
Ix; — 113

P> Note that the target dimension m is independent of the
original dimension d, and depends only on the number of
points n and the accuracy parameter.

» more surprises: picking an m x d random matrix S = G
with Gjj ~ N(0,1) standard normal works with high

probability!

s



True ‘projections’: random subspaces also work

» Pick Sy uniformly random on the unit sphere

» Pick 5(i11) uniformly random on the unit sphere and
1 5(,-), 5(1)

» S is a projection matrix, which projects onto a uniformly
random subspace

2
IF’{’HSUHQ - ,/';’ > t} <2ez"

» Applying union bound for all points i,j = 1,...,d gives a
similar result

» Random i.i.d. S matrices are easier to generate and
approximately orthogonal: ESTS = |



Computationally cheaper random matrices

» Gaussian Sjj = T N(0,1)
» Rademacher
+1 with probability -
sj=4 m TP (1)
—ﬁ with probability %

+\/E with probability
0 with probability

NIR WIN NI
—~~
N
N

7\/% with probability

» other sparse matrices (e.g. one non-zero per column)

» Fourier transform based matrices



Random projection for Approximate Matrix Multiplication
> Let the approximate product of AB be C = ASTSB

PIIAB = Cllr > 3¢[|AllFlBllF] < 6

v

Follows from JL Moment property
> ScRM™N ~ \}xrandom i.i.d. sub-Gaussian, e.g., +1, or

Vm
N(0,1) with m = & log %
> SeR™ ~ ﬁxCountSketch matrix (one nonzero per

column, which is 1 at a uniformly random location) with
_ o
m=zs

1 - _ 1
> S eR™M A~ ﬁxFast JL Transform with m = log 5



Random projection for Approximate Matrix Multiplication

>

v

v

Let the approximate product of AB be C = ASTSB
P[IAB — Cl[r > 3¢[|AllF||BllF] < 6

Follows from JL Moment property
SeRM*N ~ \}xrandom i.i.d. sub-Gaussian, e.g., +1, or

Vm
N(0,1) with m = & log %
SeR™M ~ ﬁxCountSketch matrix (one nonzero per

column, which is 1 at a uniformly random location) with
o
€28

1 ' — 1
S e RMXn ﬁxFast JL Transform with m = log 5

m =

Sparse JL and Fast JL are more efficient

advantages: doesn’t require any knowledge about matrices A
and B (oblivious)

optimal sampling probabilities depend on the column/row
norms of A and B



Least Squares Regression

» Predict the value of a continuous target variable y
(317 b1)7 seey (ana bn)
a;eRd and b; € R

> Linear regression f(a) = x"a+ xg
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1
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X’XO n N 1
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Least Squares Regression

» Predict the value of a continuous target variable y
(a1, b1), .., (an, bn)
a,-e]Rd and b; € R

> Linear regression f(a) = x” a+ xo

» Performance measure: minimum sum of squares

n

1
min — E (b,' — xTa,- — XQ)2
X’XO n N 1
1=

> we can add a regularization term A||x||3

1 T
’;‘T'XQ,,Z;(""—X ai —x0) + A||x|[3
=



Least Squares Regression

» Loss function:
L(x,x0) = 230 1 (bi — xTa; — x0)% + A||x|[3
9

> g Llxx0) =

optimal x; =2 [ (y;—xTa)=b—x"a

where 3=35""a;and b=, b;
» plugging x5 in L(x, xo)
L(x,x3) = 3 271 (bi — b —xT(ai — 3))% + Al|x|[3



Least Squares Regression

» Loss function:
L(x,x0) = 230 1 (bi — xTa; — x0)% + A||x|[3
9

> g Llxx0) =

optimal x; =2 [ (y;—xTa)=b—x"a
where 3=35""a;and b=, b;

» plugging x5 in L(x, xo)
L(x,x3) = £ X7y (bi — b—xT(a; — 3)* + A[|x|13

define centered data §; = a; — 3 and E,- =bj—b

min [|Ax — b|3 + nA[|x]|3



Least Squares Regression

» Loss function:
L(x,x0) = 7 2oi1(bi — xTaj — x0)* + Al|x|5

> aixoL(x,xo) =
optimal x; =2 [ (y;—xTa)=b—x"a
where 3=3""a,and b=>"_, b;

» plugging x5 in L(x, xo)
L(x,5g) = £ 2 (bi — b= xT(a; — 3))% + | |x[[3
define centered data 5; = a; — 3 and bj = b; — b

min [|Ax — b|3 + nA[|x]|3

L L(x,x3) = 2AT (Ax* — b) + 2nAx* = 0
optimal solution x* = (ATA+ n\)"1ATh



Autoregressive Models

b[n] = a[n+ 1] = Zxka[n — k]
K

» AR(2) model : two non-zero filter coefficients
a[n+ 1] = —xpa[n] — x1a[n — 1]

and error term e, = 0

» Example: Sine wave a[n] = sin(an) satisfies AR(2) model



Autoregressive models

» We can predict future values using

b[n] = Z a[n — k]x

k

Input data

IR
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slide credit: P. Smaragdis



Least Squares Problems and Random Projection

> Given A€ R"™9 and b € RY
find the best linear fit Ax ~ b according to

min ||Ax — b||3
x€R

» no regularization, i.e., A =10
» If Ais full column rank then
> x5 = (ATA)_lATb



Geometry

min ||Ax — bl|?
min Ax bl




Singular Value Decomposition

» Every A € R"*" has a singular value decomposition
A=UzVvT

where U € X x \ has orthonormal columns
2 is diagonal with non-increasing non negative entries
VT has orthonormal rows

» Pseudoinverse AT = VX—1yT

» Least Square solution
x1s = (ATA)TATh = Atb = VE~tUTh



Classical Methods for Least Squares

» Direct methods

» Cholesky decomposition: Form AT A and decompose
ATA = RTR where R is upper triangular. Solve normal
equations (ATA)"! = (RTR)"ATbh

» QR decomposition: A= QR, solve Rx = Qb

Singular Value Decomposition: x;5 = VE~tUTh

v

Direct methods have typically O(nd?) complexity

Indirect methods
Gradient descent with momentum (Chebyshev iteration)

Conjugate Gradient

vvyyy

Other iterative methods

Indirect methods have typically O(y/knd) complexity, where &
is the condition number



Faster Least Squares Optimization: Random Projection

> Left-sketching

Form SA and Sb where S € R™*" is a random projection
matrix

» Solve the smaller problem

min ||SAx — Sb||3
x€R9

» using any classical method.

Direct method complexity md?
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Approximation Result

> Let S € R™*9 be a Johnson-Lindenstrauss Embedding

x.s = arg min ||Ax — b||?
LS gxeRd H ||2

f(x)

X = arg newIiRrL | SAx — Sb||3
X

» If m > constant x %}A) then,

> f(xrs) < F(R) < (1+€)f(xs)
> ||A(xLs — X)||5 < € with high probability



Gaussian Sketch
> Let S be X x iid. Gaussian. E[STS] =/

X =arg rre'n]iRnd |SAx — Sb|3
X

» Is E [X] equal to x; 57



Questions?



