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Least Squares Problems and Random Projection
I Given A ∈ Rn×d and b ∈ Rd

find the best linear fit Ax ≈ b according to

min
x∈Rd

‖Ax − b‖22

I no regularization, i.e., λ = 0
I If A is full column rank then
I xLS = (ATA)−1ATb



Faster Least Squares Optimization: Random Projection

I Left-sketching

Form SA and Sb where S ∈ Rm×n is a random projection
matrix

I Solve the smaller problem

min
x∈Rd

‖SAx − Sb‖22

I using any classical method.

Direct method complexity md2



Approximation Result

I Suppose that n� d

I Let S ∈ Rm×d be a Johnson-Lindenstrauss Embedding

xLS = arg min
x∈Rd

‖Ax − b‖22︸ ︷︷ ︸
f (x)

x̃ = arg min
x∈Rd

‖SAx − Sb‖22

I Lemma If m ≥ constant× rank(A)
ε2

then,

I f (xLS) ≤ f (x̃) ≤ (1 + ε2)f (xLS)

I ‖A(xLS − x̃)‖22 ≤ ε2 with high probability



Application: Streaming data

I Suppose that n� d

I Let S ∈ Rm×d be a Johnson-Lindenstrauss Embedding

xLS = arg min
x∈Rd

‖Ax − b‖22︸ ︷︷ ︸
f (x)

x̃ = arg min
x∈Rd

‖SAx − Sb‖22

I A and b are dynamically updated and we need to find xLS at
any time

At+1 = At + ∆t and yt+1 = yt + ∆t

Can we form and update AT
t At ∈ Rd×d ?

I Linear sketch can be updated on the fly

SAt+1 = SAt + S∆t and Syt+1 = Syt + S∆t
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Gaussian Sketch
I Let S be 1

m× i.i.d. Gaussian. E[STS ] = I

x̃ = arg min
x∈Rd

‖SAx − Sb‖22

I Is E [x̃ ] equal to xLS?

I Assuming ATSTSA is invertible, we have

x̃ = (ATSTSA)−1ATSTSb

let b = AxLS + b⊥ where b⊥ ⊥ Range(A)

x̃ = (ATSTSA)−1ATSTS(AxLS + b⊥)

= xLS + (ATSTSA)−1ATSTSb⊥

I E(ATSTSA)−1ATSTSb⊥ = 0 since Sb⊥ and SA are
uncorrelated zero mean Gaussian.
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Gaussian Sketch: Variance

I Let S be i.i.d. Gaussian

x̃ = arg min
x∈Rd

‖SAx − Sb‖22 = xLS + (ATSTSA)−1ATSTSb⊥ = xLS + (SA)†Sb⊥

I Analyzing the variance E‖Ax̃ − xLS‖22
I Lemma (a) Conditioned on the matrix SA

x̃ ∼ N
(
xLS ,

f (xLS)

m
(ATSTSA)−1

)

I Sb⊥ ∼ N
(

0,
‖b⊥‖22

m I
)

I E(x̃ − xLS)(x̃ − xLS)T = (SA)†((SA)†)T = (ATSTSA)−1
‖b⊥‖22

m
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A(x̃ − xLS) ∼ N

(
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m
A(ATSTSA)−1A

)

Lemma (b) (removing conditioning) for m > d + 1

E [(ATSTSA)−1] = (ATA)−1
m

m − d − 1

I E‖A(x̃ − xLS)‖22 = E f (xLS )
m trA(ATSTSA)−1A

I E‖A(x̃ − xLS)‖22 = f (xLS )
m−d−1 trA(ATA)−1A = f (xLS) d

m−d−1
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Expected Inverse of a Random Matrix

I Where does the formula

E [(ATSTSA)−1] = (ATA)−1
m

m − d − 1

I come from?



Which sketching matrices are good?

I We need to find conditions to guarantee approximate
optimality

I Let A = UΣV T SVD in compact form

some deterministic options

I S = UT is d × n

I S = AT

I For random S matrices ATSTSA needs to be invertible

we want it to be close to ATA



Questions?


