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Randomized Linear Algebra
Lecture 9: High-dimensional Problems, Least-norm
Solutions and Randomized Methods



Faster Least Squares Optimization: Random Projection

> Left-sketching

Form SA and Sb where S € R™*" is a random projection
matrix

» Solve the smaller problem

min ||SAx — Sb||3
x€R9

» using any classical method.

Direct method complexity md?



Gaussian Sketch
> Let S be Lx iid. Gaussian. E[STS] =
X = arg min ||SAx — Sb||3
xeRI

» Unbiased E [X] = x;5
since X = x;5 + (ATSTSA)tATSTspt

Zero mean
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Gaussian Sketch
> Let S be Lx iid. Gaussian. E[STS] =
X = arg min ||SAx — Sb||3
xeRI

» Unbiased E [X] = x;5
since X = x;5 + (ATSTSA)tATSTspt

Zero mean

» Variance
E[A(% = xis)I3 = f(x1s) ==
valid for m > d + 1 where f(x) = ||Ax — b||3

» Function value
f(%) = |A%X — b||3 = |A(X — x5)||3 + || AxLs — bl|3

> Ef(X) — f(xs) = f(xs) 79—



Variance Reduction by Averaging

» Let Sq,..., S, be %x i.i.d. Gaussian. E[STS] =1/

X = arg min ||S;Ax — S;b||3
x€R

> let x =151 x

» Unbiased E [X] = x;5

» Variance is reduced by 1
> E[IA(R - xcs)3 = f(xis);

rmd



Variance Reduction by Averaging

» Let Sq,..., S, be %x i.i.d. Gaussian. E[STS] =1/
X = arg min ||S;Ax — S;b||3
x€R
let £ =150 x;

>
» Unbiased E [X] = x;5

» Variance is reduced by 1
>

>

E||A(% — xs)|I3 = f(xis): 94—
Ef() — f(xs) = f(st),ﬁ



High-dimensional Least Squares Problems

> AcR"™ whered > n

» no unique solution



High-dimensional Least Squares Problems

> AcR™9 where d > n
» no unique solution

» minimum (¢2) norm solution is unique

Xmin-norm — arg AnX.]!-]b HXH%



Minimum norm solution and SVD

Xmin-norm — arg An;lg]b HXH%



Random projection to reduce dimension: Right Sketch

Xmin-norm — arg AmXEb HXH§

» We can right multiply A and form AS where S € RY*™ and
solve

: 2
arg min |z2



Random projection to reduce dimension: Right Sketch

Xmin-norm — arg AmXEb HXH§

» We can right multiply A and form AS where S € RY*™ and
solve

: 2
arg min |z2

» How do we use z € R™?



Right Sketch

_ : 2

Xmln—norm - arg Argg]b HX||2
f(x)

approximation X =52

here Z := i 2
where Z := arg min_ lz]5



Right Sketch

Xmin—norm == arg ArQ!]b HXH%

f(x)
approximation X =52

here Z := i 2
where Z := arg min_ lz]5

» Let S bei.i.d. Gaussian N(O,%)

~ . . ~ i
» |s X unbiased, i.e., EX =" Xpinnom



Right Sketch

_ : 2

Xmln—norm - arg An;!]b HX||2
f(x)

approximation X =52

here Z := i 2
where Z := arg min_ lz]5

v

Let S be i.i.d. Gaussian N(O,%)

> Is X unbiased, i.e., EX =7 Xpinnorm
» Yes, conditioned on SA

% ~ N(Xinnorms VV T BT (ASTSAT) 1)

» VVT is the projection onto the null space of A
> error X — Xpinnom € Null(A)



Right Sketch

Xmin—norm = arg An;!]b HXH%

f(x)

approximation X =52

here Z := i 2
where Z := arg min_ lz]5

» Let S be i.i.d. Gaussian N(O, \F)

> Is X unbiased, i.e., EX =7 Xpinnorm
» Yes, conditioned on SA

% ~ N(Xinnorms VV T BT (ASTSAT) 1)
» VVT is the projection onto the null space of A
error X — Xminnorm € Null(A)
> Using E(ASTSAT)"1=AAT M

EHX mln norm”2 - md nnlf( min- norm) - m—n— ]_HXmln norm”2

v




Left Sketch vs Right Sketch Summary

» Both are unbiased using Gaussian projections
> Aisnxd
» Left sketch n > d

X =arg rQIiRnd |SAx — Sb||3
X

Variance: E||A(X — x15)|3 = f(XLS)m:z/fl
> Right sketch d > n

X =5Z where Z := i 2
X Z where Z 1= arg_min, llz]|5

d—n
m—n—1

Variance: E||x — xmin,nO,mH% = (Xmin-norm)



Back to Left Sketch: Which sketching matrices are good?

> We need to find conditions to guarantee approximate
optimality
> Let A= UZVT SVD in compact form

some deterministic options
» S=UTisdxn
> S=AT

» For random S matrices AT ST SA needs to be invertible
we want it to be close to AT A



Approximate Matrix Multiplication
> Let the approximate product of AB be C = ASTSB

P[||[AB — C|[r > €| Allrl|BllF] < 6

v

Follows from JL Moment property
> S cRM™N ~ \}xrandom i.i.d. sub-Gaussian, e.g., +1, or

Vm
N(0,1) with m = & log %
> SeR™ ~ ﬁxCountSketch matrix (one nonzero per

column, which is 1 at a uniformly random location) with
_ o
m=zs

1 - _ 1
> S eR™M A~ ﬁxFast JL Transform with m = log 5



Approximate Matrix Multiplication
> Let the approximate product of AB be C = ASTSB

P[||[AB — C|[r > €| Allrl|BllF] < 6

v

Follows from JL Moment property
> S cRM™N ~ \}xrandom i.i.d. sub-Gaussian, e.g., +1, or

Vm
N(0,1) with m = & log %
> SeR™ ~ ﬁxCountSketch matrix (one nonzero per

column, which is 1 at a uniformly random location) with
o
€28

1 - _ 1
> S eR™M A~ ﬁxFast JL Transform with m = log 5

m =

v

Sparse JL and Fast JL are more efficient

» advantages: doesn't require any knowledge about matrices A
and B (oblivious)

» optimal sampling probabilities depend on the column/row

norms of A and B



Basic Inequality Method

We minimize X = arg min ||S(Ax — b)||3

>

> x5 minimizes ||Ax — b||3
» How far is X from x; 57
>

Step 1. Establish two optimality (in)equalities for these
variables

|Ax.s — b||3 < ||Ax" — b)||3 for any X/, i.e., AT(Ax s — b) =0
IS(A% = b)|3 < [|S(AxLs — b)I3

vy



Basic Inequality Method

» We minimize X = arg min ||S(Ax — b)||3

> x5 minimizes ||Ax — b||3

» How far is X from x; 57

» Step 1. Establish two optimality (in)equalities for these
variables

> ||Ax s — b||3 < ||Ax" — b)||3 for any X/, i.e., AT(Ax s — b) =0

> |S(A% — b)I3 < IS(Axes — b3

> Step 2. Define error A = X — x; s and re-write these
inequalities in terms of §

> |SAA|2 < 2617 (STS — 1AA
> Step 3. Argue S'S =~/



Leverage Scores



Questions?



