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Faster Least Squares Optimization: Random Projection

I Left-sketching

Form SA and Sb where S ∈ Rm×n is a random projection
matrix

I Solve the smaller problem

min
x∈Rd

‖SAx − Sb‖22

I using any classical method.

Direct method complexity md2



Gaussian Sketch

I Let S be 1
m× i.i.d. Gaussian. E[STS ] = I

x̃ = arg min
x∈Rd

‖SAx − Sb‖22

I Unbiased E [x̃ ] = xLS

since x̃ = xLS + (ATSTSA)−1ATSTSb⊥︸ ︷︷ ︸
zero mean

I Variance

E‖A(x̃ − xLS)‖22 = f (xLS) d
m−d−1

valid for m > d + 1 where f (x) = ‖Ax − b‖22
I Function value

f (x̃) = ‖Ax̃ − b‖22 = ‖A(x̃ − xLS)‖22 + ‖AxLS − b‖22
I Ef (x̃)− f (xLS) = f (xLS) d

m−d−1
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Variance Reduction by Averaging

I Let S1, ...,Sr be 1
m× i.i.d. Gaussian. E[STS ] = I

x̃i = arg min
x∈Rd

‖SiAx − Sib‖22

I let x̃ = 1
r

∑r
i=1 xi

I Unbiased E [x̃ ] = xLS
I Variance is reduced by 1

r

I E‖A(x̃ − xLS)‖22 = f (xLS)1r
d

m−d−1

I Ef (x̃)− f (xLS) = f (xLS)1r
d

m−d−1
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High-dimensional Least Squares Problems

I A ∈ Rn×d where d > n

I no unique solution

I minimum (`2) norm solution is unique

xmin-norm = arg min
Ax=b

‖x‖22
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Minimum norm solution and SVD

xmin-norm = arg min
Ax=b

‖x‖22



Random projection to reduce dimension: Right Sketch

xmin-norm = arg min
Ax=b

‖x‖22

I We can right multiply A and form AS where S ∈ Rd×m and
solve

arg min
ASz=b

‖z‖22

I How do we use z ∈ Rm?
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Right Sketch

xmin-norm = arg min
Ax=b

‖x‖22︸︷︷︸
f (x)

approximation x̃ = Sz̃

where z̃ := arg min
ASz=b

‖z‖22

I Let S be i.i.d. Gaussian N(0, 1√
m

)

I Is x̃ unbiased, i.e., Ex̃ =? xmin-norm

I Yes, conditioned on SA

x̃ ∼ N(xmin-norm,VV
TbT (ASTSAT )−1b)

I VV T is the projection onto the null space of A
I error x̃ − xmin-norm ∈ Null(A)
I Using E(ASTSAT )−1 = AAT m

m−n−1
E‖x̃ − xmin-norm‖22 = d−n

m−n−1 f (xmin-norm) = d−n
m−n−1‖xmin-norm‖22
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Left Sketch vs Right Sketch Summary

I Both are unbiased using Gaussian projections

I A is n × d

I Left sketch n ≥ d

x̃ = arg min
x∈Rd

‖SAx − Sb‖22

Variance: E‖A(x̃ − xLS)‖22 = f (xLS) d
m−d−1

I Right sketch d > n

x̃ = Sz̃ where z̃ := arg min
ASz=b

‖z‖22

Variance: E‖x̃ − xmin-norm‖22 = f (xmin-norm) d−n
m−n−1



Back to Left Sketch: Which sketching matrices are good?

I We need to find conditions to guarantee approximate
optimality

I Let A = UΣV T SVD in compact form

some deterministic options

I S = UT is d × n

I S = AT

I For random S matrices ATSTSA needs to be invertible

we want it to be close to ATA



Approximate Matrix Multiplication

I Let the approximate product of AB be C = ASTSB

P [‖AB − C‖F > ε‖A‖F‖B‖F ] ≤ δ

I Follows from JL Moment property

I S ∈ Rm×n ∼ 1√
m
×random i.i.d. sub-Gaussian, e.g., ±1, or

N(0, 1) with m = c1
ε2

log 1
δ

I S ∈ Rm×n ∼ 1√
m
×CountSketch matrix (one nonzero per

column, which is ±1 at a uniformly random location) with
m = c2

ε2δ

I S ∈ Rm×n ∼ 1√
m
×Fast JL Transform with m = c3

ε log 1
δ

I Sparse JL and Fast JL are more efficient

I advantages: doesn’t require any knowledge about matrices A
and B (oblivious)

I optimal sampling probabilities depend on the column/row
norms of A and B
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Basic Inequality Method

I We minimize x̃ = arg min ‖S(Ax − b)‖22
I xLS minimizes ‖Ax − b‖22
I How far is x̃ from xLS?

I Step 1. Establish two optimality (in)equalities for these
variables

I ‖AxLS − b‖22 ≤ ‖Ax ′− b)‖22 for any x ′, i.e., AT (AxLS − b) = 0

I ‖S(Ax̃ − b)‖22 ≤ ‖S(AxLS − b)‖22

I Step 2. Define error ∆ = x̃ − xLS and re-write these
inequalities in terms of δ

I ‖SA∆‖22 ≤ 2b⊥
T

(STS − I )A∆

I Step 3. Argue STS ≈ I
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Leverage Scores



Questions?


