EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Thursday, Feb 4 2020

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Randomized Linear Algebra Lecture 9: High-dimensional Problems, Least-norm Solutions and Randomized Methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Faster Least Squares Optimization: Random Projection

Left-sketching

Form SA and Sb where $S \in \mathbb{R}^{m \times n}$ is a random projection matrix

Solve the smaller problem

$$\min_{x\in\mathbb{R}^d}\|SAx-Sb\|_2^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

using any classical method.
 Direct method complexity md²

Gaussian Sketch

Gaussian Sketch

zero mean

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

► Variance

$$\mathbb{E} \|A(\tilde{x} - x_{LS})\|_2^2 = f(x_{LS}) \frac{d}{m-d-1}$$
valid for $m > d+1$ where $f(x) = \|Ax - b\|_2^2$

Gaussian Sketch

• Unbiased
$$\mathbb{E}[\tilde{x}] = x_{LS}$$

since $\tilde{x} = x_{LS} + \underbrace{(A^T S^T S A)^{-1} A^T S^T S b^{\perp}}_{\text{zero mean}}$

Variance

$$\mathbb{E} \|A(\tilde{x} - x_{LS})\|_{2}^{2} = f(x_{LS}) \frac{d}{m - d - 1}$$

valid for $m > d + 1$ where $f(x) = \|Ax - b\|_{2}^{2}$

Variance Reduction by Averaging

► Let
$$S_1, ..., S_r$$
 be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$
 $\tilde{x}_i = \arg \min_{x \in \mathbb{R}^d} \|S_i A x - S_i b\|_2^2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

let
$$\tilde{x} = \frac{1}{r} \sum_{i=1}^{r} x_i$$
Unbiased $\mathbb{E}[\tilde{x}] = x_{LS}$
Variance is reduced by $\frac{1}{r}$
 $\mathbb{E} ||A(\tilde{x} - x_{LS})||_2^2 = f(x_{LS}) \frac{1}{r} \frac{d}{m-d-1}$

Variance Reduction by Averaging

► Let
$$S_1, ..., S_r$$
 be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$
 $\tilde{x}_i = \arg\min_{x \in \mathbb{R}^d} \|S_i A x - S_i b\|_2^2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\blacktriangleright \quad \text{let } \tilde{x} = \frac{1}{r} \sum_{i=1}^{r} x_i$$

- Unbiased $\mathbb{E}[\tilde{x}] = x_{LS}$
- ► Variance is reduced by $\frac{1}{r}$

•
$$\mathbb{E} \|A(\tilde{x} - x_{LS})\|_2^2 = f(x_{LS}) \frac{1}{r} \frac{d}{m-d-1}$$

$$\blacktriangleright \mathbb{E}f(\tilde{x}) - f(x_{LS}) = f(x_{LS})\frac{1}{r}\frac{d}{m-d-1}$$

High-dimensional Least Squares Problems

(ロ)、(型)、(E)、(E)、 E) の(()

►
$$A \in \mathbb{R}^{n \times d}$$
 where $d > n$

no unique solution

High-dimensional Least Squares Problems

►
$$A \in \mathbb{R}^{n \times d}$$
 where $d > n$

- no unique solution
- minimum (ℓ_2) norm solution is unique

$$x_{\min\text{-norm}} = \arg\min_{Ax=b} \|x\|_2^2$$

Minimum norm solution and SVD

$$x_{\min-norm} = \arg\min_{Ax=b} \|x\|_2^2$$

Random projection to reduce dimension: Right Sketch

$$x_{\min-norm} = \arg\min_{Ax=b} \|x\|_2^2$$

▶ We can right multiply *A* and form *AS* where *S* ∈ $\mathbb{R}^{d \times m}$ and solve

$$\arg\min_{ASz=b} \|z\|_2^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Random projection to reduce dimension: Right Sketch

$$x_{\min-norm} = \arg\min_{Ax=b} \|x\|_2^2$$

▶ We can right multiply A and form AS where $S \in \mathbb{R}^{d \times m}$ and solve

$$\underset{ASz=b}{\operatorname{arg min}} \|z\|_2^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ How do we use $z \in \mathbb{R}^m$?

$$x_{\min\text{-norm}} = \arg\min_{Ax=b} \underbrace{\|x\|_2^2}_{f(x)}$$

 $\begin{aligned} \text{approximation} \quad & \tilde{x} = S\tilde{z} \\ \text{where } \tilde{z} := \arg\min_{ASz=b} \|z\|_2^2 \end{aligned}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$x_{\min-norm} = \arg\min_{Ax=b} \underbrace{\|x\|_2^2}_{f(x)}$$

 $\begin{aligned} \text{approximation} \quad & \tilde{x} = S\tilde{z} \\ \text{where } \tilde{z} := \arg\min_{ASz=b} \|z\|_2^2 \end{aligned}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let S be i.i.d. Gaussian N(0, ¹/_{√m})
 Is x̃ unbiased, i.e., Ẽx =[?] x_{min-norm}

$$x_{\min-norm} = \arg\min_{Ax=b} \underbrace{\|x\|_2^2}_{f(x)}$$

approximation $\tilde{x} = S\tilde{z}$ where $\tilde{z} := \arg\min_{ASz=b} ||z||_2^2$

Let S be i.i.d. Gaussian N(0, 1/√m)
Is x̃ unbiased, i.e., Ẽx̃ =? x_{min-norm}
Yes, conditioned on SA x̃ ~ N(x_{min-norm}, VV^Tb^T(AS^TSA^T)⁻¹b)
VV^T is the projection onto the null space of A
error x̃ - x_{min-norm} ∈ Null(A)

$$x_{\min-norm} = \arg\min_{Ax=b} \underbrace{\|x\|_2^2}_{f(x)}$$

 $\begin{aligned} & \text{approximation} \quad \tilde{x} = S\tilde{z} \\ & \text{where } \tilde{z} := \arg\min_{ASz=b} \|z\|_2^2 \end{aligned}$

Let S be i.i.d. Gaussian $N(0, \frac{1}{\sqrt{m}})$ ▶ Is \tilde{x} unbiased, i.e., $\mathbb{E}\tilde{x} = x_{\min-norm}$ Yes. conditioned on SA $\tilde{x} \sim N(x_{\min norm}, VV^T b^T (AS^T SA^T)^{-1}b)$ • VV^T is the projection onto the null space of A • error $\tilde{x} - x_{\min-norm} \in Null(A)$ • Using $\mathbb{E}(AS^TSA^T)^{-1} = AA^T \frac{m}{m-n-1}$ $\mathbb{E} \| \tilde{x} - x_{\min-norm} \|_{2}^{2} = \frac{d-n}{m-n-1} f(x_{\min-norm}) = \frac{d-n}{m-n-1} \| x_{\min-norm} \|_{2}^{2}$ ・ロト・日本・日本・日本・日本

Left Sketch vs Right Sketch Summary

- Both are unbiased using Gaussian projections
- A is n × d
- Left sketch $n \ge d$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

Variance:
$$\mathbb{E} \|A(\tilde{x} - x_{LS})\|_2^2 = f(x_{LS}) \frac{d}{m-d-1}$$

Right sketch $d > n$

$$\tilde{x} = S\tilde{z}$$
 where $\tilde{z} := \arg\min_{ASz=b} ||z||_2^2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Variance:
$$\mathbb{E} \| \widetilde{x} - x_{\min-norm} \|_2^2 = f(x_{\min-norm}) \frac{d-n}{m-n-1}$$

Back to Left Sketch: Which sketching matrices are good?

- We need to find conditions to guarantee approximate optimality
- Let $A = U\Sigma V^T$ SVD in compact form

some deterministic options

$$S = U^T \text{ is } d \times n$$

 $\blacktriangleright S = A^T$

For random S matrices A^TS^TSA needs to be invertible we want it to be close to A^TA

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Approximate Matrix Multiplication

• Let the approximate product of AB be $C = AS^T SB$

$$\mathbb{P}\left[\|AB - C\|_{F} > \epsilon \|A\|_{F} \|B\|_{F}\right] \leq \delta$$

Follows from JL Moment property

• $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$

► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is ±1 at a uniformly random location) with <math>m = \frac{c_2}{\epsilon^2 \delta}$

•
$$S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{Fast JL Transform with } m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}$$

Approximate Matrix Multiplication

• Let the approximate product of AB be $C = AS^T SB$

$$\mathbb{P}\left[\|AB - C\|_{F} > \epsilon \|A\|_{F} \|B\|_{F}\right] \leq \delta$$

Follows from JL Moment property

• $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$

- $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is <math>\pm 1$ at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$
- $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} imes Fast JL$ Transform with $m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}$
- Sparse JL and Fast JL are more efficient
- advantages: doesn't require any knowledge about matrices A and B (oblivious)
- optimal sampling probabilities depend on the column/row norms of A and B

Basic Inequality Method

- We minimize $\tilde{x} = \arg \min \|S(Ax b)\|_2^2$
- x_{LS} minimizes $||Ax b||_2^2$
- How far is \tilde{x} from x_{LS} ?
- Step 1. Establish two optimality (in)equalities for these variables
- $||Ax_{LS} b||_2^2 \le ||Ax' b||_2^2$ for any x', i.e., $A^T(Ax_{LS} b) = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• $||S(A\tilde{x}-b)||_2^2 \le ||S(Ax_{LS}-b)||_2^2$

Basic Inequality Method

- We minimize $\tilde{x} = \arg \min \|S(Ax b)\|_2^2$
- x_{LS} minimizes $||Ax b||_2^2$
- How far is x from x_{LS}?
- Step 1. Establish two optimality (in)equalities for these variables
- $||Ax_{LS} b||_2^2 \le ||Ax' b||_2^2$ for any x', i.e., $A^T(Ax_{LS} b) = 0$
- $||S(A\tilde{x}-b)||_2^2 \le ||S(Ax_{LS}-b)||_2^2$
- Step 2. Define error Δ = x̃ x_{LS} and re-write these inequalities in terms of δ

$$||SA\Delta||_2^2 \le 2b^{\perp T}(S^TS - I)A\Delta$$

Step 3. Argue $S^T S \approx I$

Leverage Scores

Questions?