4.1 Tensors

A tensor is a multi-dimensional array, which are used in a variety of applications, such as weights and activations in deep neural networks. The order of a tensor (also known as the modes of a tensor) is the number of dimensions N of that tensor. An element (i, j, k) of a third-order tensor X is denoted by $X_{i,j,k}$. Fibers are defined by fixing every index but one; they are a higher-dimensional analogue of matrix rows and columns. Slices are defined by fixing all but two indices, i.e. two-dimensional sections of a tensor. Examples of fibers and slices are seen in figure 4.1. The (Frobenius) norm of a tensor is defined as

$$||X||_F = \sqrt{\sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \cdots \sum_{i_N=1}^{I_N} |X_{i_1i_2 \ldots i_N}|^2},$$

where the j-th dimension fiber is in \mathbb{R}^{I_j}.

![Sample fibers and slices of an order 3 tensor](image)

Figure 4.1: Sample fibers and slices of an order 3 tensor
4.2 Tensor Multiplication

4.2.1 Definition

The n-mode (matrix) product of a tensor $A \in \mathbb{R}^{d_1 \times d_2 \times \ldots \times d_N}$ with a matrix $B \in \mathbb{R}^{p \times d_n}$ is done element-wise as below.

$$(A \times_n B)_{i_1, \ldots, i_{n-1}i_n+1 \ldots, i_N} = \sum_{i_n=1}^{d_n} A_{i_1i_2 \ldots i_n \ldots i_N} B_{ji_n}$$

In other words, each mode-n fiber of A is multiplied by the matrix B.

4.2.2 Approximate Tensor Multiplication

The algorithm for approximate tensor multiplication is shown in Figure 4.2. The central idea is to reduce the dimensions of the tensor A and matrix B with sampling to get C and R, and perform an n-mode matrix product with C and R using the classical algorithm. The complexity of this algorithm is $O(d_1 \ldots d_{n-1} md_n \ldots d_N p)$.

![Algorithm 1 Approximate Tensor n-Mode Product via Sampling](image)

Figure 4.2: Algorithm for approximate tensor multiplication

We now look at the mean and variance of the multiplication estimator. Define

$$M_{i,j} \triangleq (A \times_n B)_{i_1, \ldots, i_{n-1}j_{i_{n+1}} \ldots, i_N} = \sum_{i_n=1}^{d_n} A_{i_1i_2 \ldots i_n \ldots i_N} B_{ji_n}$$

and

$$\hat{M}_{i,j} \triangleq \sum_{i_n=1}^{m} \frac{1}{p_{i_n}} A_{i_1i_2 \ldots i_n \ldots i_N} B_{ji_n}.$$

This estimator is unbiased, i.e. $\mathbb{E}[\hat{M}_{i,j}] = M_{i,j}$. The variance is

$$\text{Var}[\hat{M}_{i,j}] = \frac{1}{m} \sum_{i_n=1}^{d_n} \frac{1}{p_{i_n}} A_{i_1i_2 \ldots i_n \ldots i_N}^2 B_{ji_n}^2 - \frac{1}{m} (M_{i,j})^2.$$
To achieve the optimal multiplication estimator, we want to solve the following minimization problem.

$$\minimize_p \mathbb{E} ||\hat{M} - M||^2_F = \minimize_p \sum \var[\hat{M}_{ij}].$$

After some math, we find that the optimal p is defined by

$$p_k = \frac{||A...k...||_F||B_k||_F}{\sum_k ||A...k...||_F||B_k||_F}.$$

4.3 Verifying Matrix Multiplication

We now consider a different problem. Suppose we are given three $n \times n$ matrices A, B, M. We want to verify whether $AB = M$. The naive method is to multiply A and B with the classical method and compare each point in the product and M individually, which is $O(n^3)$. It turns out that a randomized algorithm can do this in $O(n^2)$ and no faster.

The algorithm for this method is known as Frievald’s Algorithm (1977). We first sample a random vector $r = [r_1, ..., r_n]^T$. We compute Br, then $A(Br)$. We compute Mr. Finally, we compare our two products. If $A(Br) \neq Mr$, then $AB \neq M$ with 100% probability. Otherwise, we return $AB = M$. Since there are three matrix-vector multiplications, we have a complexity of $O(n^2)$.

We would like to analyze the failure probability of this algorithm. Without knowing anything about the matrices A, B, M, we can’t guarantee a high or low probability for this algorithm. However, if we pick each r_i in $r = [r_1, ..., r_n]^T$ in an i.i.d. fashion to be $+1$ or $−1$ with probability $\frac{1}{2}$, we can claim $\mathbb{P}[ABr = Mr] \leq \frac{1}{2}$. Note that we can also choose r_i to be 0 or 1. To improve the error probability, we run the algorithm independently k times. If we ever find an r^k such that $ABr^k = Mr^k$, then the algorithm correctly returns $AB \neq M$. If we always find $ABr = Mr$, then the error probability is at most $\frac{1}{2^k}$. For $k = 25$, we have an error probability $\leq 10^{-9}$.

4.4 Concentration Bounds

In order to achieve tighter success probabilities, we look at concentration bounds. Specifically for approximate matrix multiplication (AMM), the size of the sample is $m = \frac{1}{\delta \epsilon^2}$. We would like to have m not depend on the failure probability δ.

4.4.1 Specific Bounds

We provide a quick refresher on common bounds. Markov’s Inequality states that for $Z > 0$ and $t > 0$,

$$\mathbb{P}[Z > a] \leq \frac{\mathbb{E}Z}{a}.$$
Chebyshev’s Inequality is as follows. Let \(X \) be a random variable with expectation \(\mathbb{E}[X] \) and variance \(\text{Var}[X] \). Then,
\[
\mathbb{P}[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}.
\]

Lastly, Chernoff’s Bound has several versions with better constants, but we present this one. Let \(X_1, \ldots, X_m \) be independent random variables \(\in [0, 1] \) and let \(\mu = \mathbb{E}X_1 \). Then
\[
\mathbb{P}[\left| \frac{1}{m} \sum_{i=1}^{m} X_i - \mu \right| > t\mu] \leq 2e^{-m\frac{t^2}{3\mu}}.
\]

We will use this result in the following discussions.

4.4.2 Application 1: Monte Carlo Approximations

We look at applications in Monte Carlo Approximations. Suppose we want to estimate \(\pi \). We uniformly sample \(z_1, \ldots, z_m \) i.i.d. from \([0, 1]^2 \). We define the random variable \(Z_i \) below.
\[
Z_i = \begin{cases}
1 & \|z_i\|_2 \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

Thus, \(\mathbb{P}[Z_i = 1] = \frac{\pi}{4} \). Applying the Chernoff Bound, we get
\[
\left| \frac{1}{m} \sum_{i=1}^{m} Z_i - \frac{\pi}{4} \right| \leq \epsilon \frac{\pi}{4}
\]

with probability at least \(1 - 2e^{-m\epsilon^2/\pi} \). We can pick \(m \geq \frac{12}{\pi^2} \log \frac{2}{\delta} \) and obtain an estimate of \(\hat{\pi} \) such that \((1 - \epsilon)\pi \leq \hat{\pi} \leq (1 + \epsilon)\pi \) with probability at least \(1 - \delta \). The range \([(1 - \epsilon)\pi, (1 + \epsilon)\pi] \) is a confidence interval.

4.4.3 Application 2: Amplifying Probability of Success

Now we try to amplify the probability of success of a randomized algorithm. Suppose we have a randomized algorithm which produces an \(\epsilon \) approximation \(|\hat{x} - x^*| \leq \epsilon \) with probability at least 0.9. We repeat the algorithm \(m \) times independently, and take the median of the \(m \) outputs. Note that we take the median instead of the mean, because a failure case could result in very large/small values that shift the mean. Let the random variable \(X_i = 1 \) if the \(i \)-th trial is good, i.e. \(|\hat{x}_i - x^*| \leq \epsilon \). If at least half of the \(X_i \)'s are one, the median of the \(m \) outputs is also good, i.e. \(\left| \text{Median}(\hat{x}_i) - x^* \right| \leq \epsilon \). The Chernoff Bound implies that \(\left| \frac{1}{m} \sum_{i=1}^{m} X_i - 0.9 \right| \leq 0.9t \) with probability \(1 - e^{-t^2/0.9m/3} \). Pick \(t = 0.4/0.9 \). Then, the median is an \(\epsilon \) approximation with probability at least \(1 - e^{-0.059m} \), e.g., for \(m = 200 \), failure probability is \(\leq 7 \times 10^{-6} \).
4.4.4 Median for Approximate Matrix Multiplication

Since the Chernoff Bound implies that the majority of estimators are good, we would like to generalize the concept of a median to matrices. The median relies on the fact that \mathbb{R}^1 is ordered; however, matrices aren’t ordered. We could represent the median as the optimization problem, $\arg\min_y \sum |x_i - y|$, but solving this for matrices is computationally expensive. The central idea is to have some concept of “centrality”. We look at distances between estimates: the correct estimates will have many smaller distances, while the incorrect ones will have many larger distances.

We start with the AMM final probability bound. For any $\delta > 0$, set $m = \frac{1}{\delta \epsilon^2}$ to obtain

$$
P[\|AB - CR\|_F > \epsilon \|A\|_F \|B\|_F] \leq \delta.
$$

Suppose $\|A\|_F = \|B\|_F = 1$ and let $\epsilon = 0.1, \delta = 0.9$. Repeat the algorithm independently and obtain $C_1R_1, ..., C_tR_t$ in t independent trials. Then, $\|AB - C_iR_i\|_F < 0.1$ with probability 0.9 for each i. However, we don’t know which ones are good, i.e. $\|AB - C_iR_i\|_F < 0.1$.

Let $X_i = 1$ if the i-th trial is good and $X_i = 0$ otherwise. The Chernoff Bound implies that $\frac{1}{m} \sum_{i=1}^m X_i \geq 0.5$ with probability $1 - e^{-0.059m}$, i.e. at least half of the matrices are good. Compute $\rho_i \triangleq \frac{1}{|\{j \neq i, \|C_iR_i - C_jR_j\|_F \leq 0.2\}|}$.

We now prove this lemma. We use the triangle inequality which states that

$$
\|X + Y\|_F \leq \|X\|_F + \|Y\|_F
$$

and the reverse triangle inequality which states that

$$
\|X + Y\|_F \geq \|X\|_F - \|Y\|_F.
$$

Letting $X = C_iR_i - AB, Y = AB - C_jR_j$, we get

$$
\|C_iR_i - C_jR_j\|_F \leq \|C_iR_i - AB\|_F + \|C_jR_j - AB\|_F
$$

and

$$
\|C_iR_i - C_jR_j\|_F \geq \|C_iR_i - AB\|_F - \|C_jR_j - AB\|_F.
$$

If C_iR_i is good, i.e. $\|AB - C_iR_i\|_F < 0.1$, then it is close to at least half of the other C_jR_j’s. Thus, $\rho_i \geq \frac{1}{|\{j \neq i, \|C_iR_i - C_jR_j\|_F \leq 0.2\}|}$ by the triangle inequality. If C_iR_i is bad, i.e. $\|AB - C_iR_i\|_F > 0.3$, then $\|C_iR_i - C_jR_j\|_F \geq 0.2$ by the triangle inequality and $\rho_i \leq \frac{t}{2}$.

4-5