
EE 276 - Information Theory
Midterm

Feb 16, 2024

1. There are a total of 5 questions: 3 shorter questions, and 2 longer ones. You have 2
hours to take the exam. Questions have different numbers of points as indicated before
each sub-problem. There are a total of 100 points, with 2 additional bonus points.

2. Please write all answers in the designated area underneath the question. If you need
more room for your answer, please indicate as such under the question, and continue
your response elsewhere.

3. Scratch paper will be provided and collected at the end of the exam, but will not be
graded.

4. All answers should be justified, unless otherwise stated.

5. The exam is closed book but you are allowed one double-sided sheet of notes. No other
materials are allowed.

6. Calculators are not allowed.

Good luck!

Name:

SUID:
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1. Let X and Y be random variables with finite alphabet and non-zero entropy. Consider
the quantity

ρ :=
I(X;Y )

min{H(X), H(Y )}
.

(a) (8 points) Show that 0 ≤ ρ ≤ 1.

Solution: The quantity ρ is symmetric. So without loss of generality, we can
assume that H(X) ≤ H(Y ) and hence

ρ =
I(X;Y )

min{H(X), H(Y )}
=

H(X)−H(X|Y )

H(X)
= 1− H(X|Y )

H(X)
.

Since conditioning reduces entropy and entropy is nonnegative, we have

0 ≤ H(X|Y )

H(X)
≤ 1,

and hence 0 ≤ ρ ≤ 1.

(b) (8 points) Interpret the extreme cases of ρ = 0 and ρ = 1: what can you say
about the relationship between X and Y under each of these cases?

Solution: ρ = 0 if and only if I(X;Y ) = 0 which holds if and only if X, Y are
independent. Meanwhile, ρ = 1 holds if I(X;Y ) = H(X) (I(X;Y ) = H(Y ))
and hence H(X|Y ) = 0 (or H(Y |X) = 0) implying that one is a deterministic
function of the other.
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2. Let the discrete random variables X, Y, Z be such that

Z = X + Y.

(a) (8 points) Show that H(Z) ≤ H(X) +H(Y ).

Solution: We have

H(X + Y ) ≤ H(X, Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y ).

The first inequality holds since X + Y is a deterministic function of (X, Y ), and
the second holds because conditioning reduces entropy.

(b) (6 points) Under what conditions does the inequality hold with equality?

Solution: The first inequality above holds with equality when the map from
(X, Y ) to Z = X + Y is invertible, meaning that the values of X, Y can be deter-
mined from the sum. One example of this is if X ∈ {0, 1} with equal probability
and Y ∈ {2, 4} with equal probability. Meanwhile, the second inequality holds
with equality if X and Y are independent.
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3. (10 points) Amemoryless sourceX1, X2, . . . is drawn from X = {a, b, c} with respective

probabilities (1/2, 1/4, 1/4). Consider the typical set A(n)
ϵ for n = 8 and ϵ = 1/10. How

many occurrences of the letter “a” are there in a sequence belonging to this set? (i.e.,
does this set contain sequences with one “a”, two “a”s, . . . , etc.?). You don’t need to
perform long and difficult arithmetic computations to answer this question.

Solution: A sequence is typical (i.e. in the typical set, A(n)
ϵ ) if for (x1, x2, . . . , xn) ∈ X n

we have,
2−n(H(X)+ϵ) ≤ p (x1, x2, . . . , xn) ≤ 2−n(H(X)−ϵ)

Note that for the above source,

H(X) = −
(
1

2
log

1

2
+

1

4
log

1

4
+

1

4
log

1

4

)
=

(
1

2
log 2 +

1

4
log 4 +

1

4
log 4

)
=

(
1

2
+

1

2
+

1

2

)
=

3

2

for n = 8 and ϵ = 0.1, we have

2−8( 3
2
+ 1

10
) ≤ p (x1, x2, . . . , xn) ≤ 2−8( 3

2
− 1

10
)

2−
64
5 ≤ p (x1, x2, . . . , xn) ≤ 2−

56
5

2−12 4
5 ≤ p (x1, x2, . . . , xn) ≤ 2−11 1

5

The probabilities for a sequence with na a’s, nb b’s, and nc c’s (na + nb + nc = n) can

be written as p (x1, x2, . . . , xn) =
(
1
2

)na
(
1
4

)nb
(
1
4

)nc
=

(
1
2

)na
(
1
4

)n−na
= 2−(na+2(n−na)) =

2−(2n−na). We can see trivially that this exponent will be a whole number. The only
whole number between −111

5
and −124

5
is −12, so setting 2n − na = 12 and n = 8

yields na = 4. So, the sequences which lie in typical set are those which have exactly
4 a’s in them.

If you are curious how large A(n)
ϵ is, there are

(
n
na

)
ways of choosing where the na a’s

go, then, of the remaining n − na spaces available, there are
∑n−na

i=0

(
n−na

i

)
possible

ways to arrange the b’s and c’s. So, the total size of A(n)
ϵ is

|A(n)
ϵ | =

(
n

na

) n−na∑
i=0

(
n− na

i

)
For the above example, we have

|A(n)
ϵ | =

(
8

4

) 4∑
i=0

(
4

i

)
=

(
8

4

)
24

= 70 · 16 = 1120

Since every sequence in the typical set has the probability 2−12, the probability of a
sequence being in the typical set is just

P (Xn ∈ A(n)
ϵ ) = 2−12 · 1120 ≈ 0.2734375
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4. (Each part of this problem can be attempted independently of the other parts, using
only what is stated in the prompts of the preceding parts.)

In this problem, we will study the entropy of the English language as Shannon did.
In what follows, we will model an infinitely long string of English text as a random
process

X1, X2, X3 . . .

where Xi takes values in X := {a, . . . , z}, |X | = 26. Here, Xi represents the ith letter
in a long English string. Note that the Xis are not independent, but for simplicity,
we’ll assume that the process is stationary, meaning that

p(x1, . . . , xn) = p(x1+k, . . . , xn+k)

for all n, k ≥ 0 and symbols xj ∈ X .

For n ≥ 1, let us define the n-gram entropy as

H1 := H(X1)

Hn := H(Xn|Xn−1, Xn−2, . . . , X1), for n ≥ 2,

which can be thought of as the entropy of the next letter in position n given the
previous n− 1 letters. A natural definition of the entropy of English is then

HEng := lim
n→∞

Hn.

(a) (8 points) Show that Hn ≥ Hn+1.

Solution: The process is stationary. So, we should haveH(Xn|Xn−1Xn−2 . . . X1) =
H(Xn+1|XnXn−1 . . . X2) = Hn. Since conditioning reduces entropy, we must have
Hn+1 = H(Xn+1|XnXn−1 . . . X1) ≤ Hn.
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(b) (4 points) Using results from class, or otherwise, argue that Hn converges, i.e.,
that HEng exists and is finite.

Solution: We learned in class that this limit exists as long as the process is
stationary. This can also be deduced from the previous part: namely, we know
that H0 ≥ Hn. Furthermore, we know that conditional entropy is non-negative,
so Hn ≥ 0. Due to the monotone convergence theorem, since Hn is bounded and
monotonically decreasing, the limit exists.

For the sake of simplicity, in what follows, we’ll only consider approximating HEng

using n = 1 and n = 2.

(c) (6 points) Show that the maximum values that H1 and H2 can take on are H⋆
1

and H⋆
2, respectively, which are given by

H⋆
1 = H⋆

2 = log 26 (≈ 4.7 bits).

Solution: We have H1 = H(X1) and H2 = H(X2|X1) = H(X2, X1)−H(X1)

Uniform distributions maximize entropy, so we want p(i) = 1
N

∀i and q(i, j) = 1
N2

∀(i, j) This gives:

H1 = logN

H2 = logN2 − logN = logN

For N = 26, we have H1 = H2 = log 26 = 4.7
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Figure 1: Letter Frequencies calculated by Peter Norvig in 2012.

When Shannon and his wife Mary estimated H1 and H2 from English text, they found
that

H1 ≈ 4.14 bits and H2 ≈ 3.56 bits.

(d) (5 points) Give a reason why H1 for English is lower than H⋆
1.

Solution: English letters are not distributed normally! On HW1, we saw that
one-hot probability vectors across the letters minimizes entropy. The distribution
of English is between these two extremes and is show in figure 1.

(e) (5 points) In general, you showed in part (a) that H2 ≤ H1. What does the fact
that H2 is considerably smaller than H1 tell us about letter pairs in English?

Solution: H2 is strictly less than H1 because English is contextual, English letters
depend on what comes before them, and therefore not independent. This means that
conditioning on the letters we have seen in the past, will strictly reduce the entropy.
You can see in figure 2 the empirical joint distribution of bigrams. There are only
seven bigrams that do not occur among the 2.8 trillion mentions: JQ, QG, QK, QY,
QZ, WQ, and WZ. They are shown as crossed out.
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Figure 2: Digram frequencies computed by Peter Norvig in 2012. There are only seven
bigrams that do not occur among the 2.8 trillion instances of digrams: JQ, QG, QK, QY,
QZ, WQ, and WZ. They are shown as crossed out.
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5. (Each part of this problem can be attempted independently of the other parts, using
only what is stated in the prompts of the preceding parts.)

Consider a channel given by
Y = X + Z (1)

where the input X, output Y and noise Z are nonnegative. Furthermore, Z and X
are independent. Let Z have an exponential distribution with parameter λ > 0, which
we denote by writing Z ∼ exp(λ). More precisely, this means that the density of Z is
given by

f(z) =

{
0 z < 0

λe−λz z ≥ 0.

It may also be useful to recall that this implies that E[Z] = 1/λ.

In this problem, you will find the capacity of this channel, under the constraint on the
input

E[X] ≤ P. (2)

(a) (8 points) Show that the differential entropy of Z is given by

h(Z) = − log λ+
1

ln 2
.

Solution:

h(Z) = −E[log(λe−λZ)]

= − log(λ) + λ log(e)E[Z]

= − log(λ) +
1

ln 2

where we used the given value of the expectation of Z.
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(b) (8 points) Show that for any random variable W ≥ 0 with E[W ] ≤ M , we have

h(W ) ≤ − log
1

M
+

1

ln 2
.

Solution: The proof here follows the proof for the Gaussian from lecture, or the
distribution Ce−x4

from the homework. First, observe that the bound in question
corresponds to the differential entropy of an exponential, random variable with
parameter 1/M . So for a given random variable W with distribution PW that
satisfies the expectation constraint given, we have

0 ≤ D(PW∥exp(1/M))

= −h(W )− E[log(M−1e−W/M)]

= −h(W ) + logM +M−1 log(e)E[W ]

≤ −h(W ) + logM +
1

ln 2
,

.

The result follows by adding h(W ) to both sides.

(c) (8 points) Use the claims of previous two parts to show that

I(X;Y ) ≤ log(1 + Pλ)

for Y as in (1) under the constraint (2) on X.

Solution: We have

I(X;Y ) = h(X + Z)− h(X + Z|X) = h(X + Z)− h(Z)

since X and Z are independent. Now,

h(Z) = − log(λ) +
1

ln 2

from part (a). Meanwhile, to bound h(X + Z), we note that

E[X + Z] = E[X] + E[Z] ≤ P +
1

λ
,

so we can apply part (b) to conclude

h(X + Z) ≤ − log
1

P + 1/λ
+

1

ln 2
.

So

I(X;Y ) ≤ log

(
P +

1

λ

)
+ log(λ) = log(1 + Pλ)
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In what follows, you may use the following fact: Let U ∼ exp (λ/(1 + Pλ)). If X is
the random variable defined as

X =

{
0 with probability 1

1+Pλ

U with probability Pλ
1+Pλ

, (3)

then Y = X + Z has the distribution exp(λ/(1 + Pλ)).

(d) (8 points) Use this fact with the claims of the previous parts to find the capacity
of the channel in (1) under the constraint given in (2).

Solution: Consider X with the distribution in (3). We have

E[X] =
Pλ

1 + Pλ

1 + Pλ

λ
= P.

Hence, such anX is a valid input to our channel. Since Y then has the distribution
exp(λ/(1 + Pλ)), we have for this given input X,

I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(Z)

= − log
λ

1 + Pλ
+ log λ

= log(1 + Pλ).

Since this is the maximum that I(X;Y ) can be under our constraint by part (c),
then this must be the capacity of the channel.

(e) (Bonus 2 points) Prove the fact above about the distribution of Y . Namely,
show that if X follows the distribution given in (3), then Y has the distribution
exp(λ/(1 + Pλ)). You may use that the moment generating function of an expo-
nential random variable with parameter λ is given by ϕ(t) = λ/(λ−t) for t < λ.
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