
EE376A - Information Theory
Final, Monday March 16th Solutions

Instructions:

• You have three hours, 3.30PM - 6.30PM

• The exam has 4 questions, totaling 120 points.

• Please start answering each question on a new page of the answer booklet.

• You are allowed to carry the textbook, your own notes and other course related ma-
terial with you. Electronic reading devices [including kindles, laptops, ipads, etc.] are
allowed, provided they are used solely for reading pdf files already stored on them and
not for any other form of communication or information retrieval.

• You are required to provide detailed explanations of how you arrived at your answers.

• You can use previous parts of a problem even if you did not solve them.

• As throughout the course, entropy (H) and Mutual Information (I) are specified in
bits.

• log is taken in base 2.

• Throughout the exam ‘prefix code’ refers to a variable length code satisfying the prefix
condition.

• Good Luck!
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1. Three Shannon Codes (25 points)
Let {Ui}i≥1 be a stationary finite-alphabet source whose alphabet size is r. Note that
the stationarity property implies that P (ui), P (ui|ui−1) do not depend on i. Throughout
this problem, assume that − logP (ui) and − logP (ui|ui−1) are integers for all (ui, ui−1).
Recall the definition of a Shannon Code given in the lecture. Your TA’s decided to
compress this source in a lossless fashion using Shannon coding. However, each of them
had a different idea:

• Idoia suggested to code symbol-by-symbol, i.e., concatenate Shannon codes on the
respective source symbols U1, U2, . . ..

• Kartik suggested to code in pairs. In other words, first code (U1, U2) with a Shannon
code designed for the pair, then code (U3, U4), and so on.

• Jiantao suggested to code each symbol given the previous symbol by using the
Shannon code for the conditional pmf {P (ui|ui−1)}. In other words, first code U1,
then code U2 given U1, then code U3 given U2, and so on.

In this problem, you will investigate which amongst the three schemes is best for a general
stationary source.

(a) (10 points) If the source is memoryless (i.e. i.i.d.), compare the expected codeword
length per symbol, i.e., 1

n
E[l(Un)], of each scheme, assuming n > 2 is even.

(b) (15 points) Compare the schemes again, for the case where the source is no longer
memoryless and, in particular, is such that Ui−1 and Ui are not independent.

Solution:
We will first analyze each of the coding schemes for general stationary sources.
Idoia’s scheme: Use codeword length − logP (u) for a symbol u.

l̄1 =
1

n
E[l1(U

n)]

=
1

n
E

[
n∑
i=1

− logP (Ui)

]

=
1

n

n∑
i=1

E [− logP (U1)] (stationarity, and linearity of expectation)

= H(U1) (definition of entropy)

Kartik’s scheme: Use codeword length − logP (ui, ui+1) for each successive pair of sym-
bols (ui, ui+1).

l̄2 =
1

n
E[l2(U

n)]
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=
1

n
E

 n/2∑
i=1

− logP (U2i−1, U2i)


=

1

n

n/2∑
i=1

E [− logP (U1, U2)] (stationarity, and linearity of expectation)

=
1

2
H(U1, U2) (definition of entropy)

Jiantao’s scheme: Use codeword length − logP (u1) for first symbol u1, and then code-
word length − logP (ui|ui−1) for successive symbols.

l̄3 =
1

n
E[l3(U

n)]

=
1

n
E

[
− logP (U1) +

n∑
i=2

− logP (Ui|Ui−1)

]

=
1

n
E

[
− logP (U1) +

n∑
i=2

− logP (U2|U1)

]
(stationarity)

=
1

n
[H(U1) + (n− 1)H(U2|U1)] (linearity of expectation, definition of entropy)

(a) Because the source is i.i.d., all three coding schemes have the same average codeword
length, equal to the entropy H(U1). One can verify that when the source is i.i.d.
l̄1 = l̄2 = l̄3 = H(U1).

(b) Idoia’s codeword length is longest because H(U2|U1) ≤ H(U2) = H(U1). For n = 2,
the performance of Kartik’s and Jiantao’s coding schemes are identical. However for
larger n, Jiantao’s coding scheme has smallest codeword length, since H(U1, U2) =
H(U1)+H(U2|U1) ≥ 2H(U2|U1), with equality iff the source is memoryless. Therefore,
in general, l̄1 ≥ l̄2 ≥ l̄3.
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2. Channel coding with side information (35 points)

Consider the binary channel given by

Yi = Xi ⊕ Zi, (1)

where Xi, Yi, Zi all take values in {0, 1}, and ⊕ denotes addition modulo-2. There are
channel states Si which determine the noise level of Zi as follows.

• Si is binary valued, taking values in the set {G,B}, distributed as

Si =

{
G, with probability 2

3

B, with probability 1
3

• The conditional distribution of Zi given Si is characterized by

P (Zi = 1|Si = s) =

{
1
4
, if s = G

1
3
, if s = B

In other words, Zi|{Si = s} ∼ Bernoulli(ps), where

ps =

{
1
4
, if s = G

1
3
, if s = B

{(Si, Zi)} are i.i.d. (in pairs), independent of the channel input sequence {Xi}.

(a) (10 points) What is the capacity of this channel when both the encoder and the
decoder have access to the state sequence {Si}i≥1?

(b) (10 points) What is the capacity of this channel when neither the encoder nor the
decoder have access to the state sequence {Si}i≥1?

(c) (10 points) What is the capacity of this channel when only the decoder knows the
state sequence {Si}i≥1?

(d) (5 points) Which is largest and which is smallest among your answers to parts (a),
(b) and (c)? Explain.

Solution:

(a) The capacity of this channel is given by

C = max
p(X|S)

I(X;Y |S)

= max
p(X|S)

H(Y |S)−H(Y |X,S)
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= max
p(X|S)

H(X ⊕ Z|S)−H(Z|S) (Y = X ⊕ S ⊕ Z, and Z is independent of X)

≤ 1−H(Z|S) (binary entropy is upper bounded by 1)

= 1− P (S = G)H(Z|S = G)− P (S = B)H(Z|S = B)

= 1− 2

3
h2(1/4)− 1

3
h2(1/3),

where h2(·) is the binary entropy function. Note that the above bound is achieved
by choosing input X ∼ Bern(0.5) regardless of the state S. Choosing this input
gives the output a uniform distribution which maximizes the entropy. It is crucial to
state the capacity achieving distribution to show that an upper bound on the mutual
information can be achieved, which is why it is the capacity. Several students did
not do this for the problem, and lost some points.
Alternate solution: Since both encoder and decoder know the state, they can use
the corresponding capacity achieving codes for when the channel is “good” or “bad”
respectively. The capacity is simply the weighted average of the capacities of the two
binary symmetric channels, i.e.

C = P (S = G)CG + P (S = B)CB

=
2

3
(1− h2(1/4)) +

1

3
(1− h2(1/3))

= 1− 2

3
h2(1/4)− 1

3
h2(1/3).

(b) When neither encoder nor decoder has any state information, there is no way to
use the state information. This results in an average BSC with equivalent crossover
probability

p =
2

3
· 1

4
+

1

3
· 1

3

=
5

18

Thus, the capacity of this channel is simply that of a BSC(p), i.e.

C = 1− h2(5/18)

(c) The decoder has access to the state, which means that equivalently the channel output
can be viewed as the pair (Y, S). The capacity of the channel in this case is

C = max
p(X)

I(X;Y, S)

= max
p(X)

H(Y, S)−H(Y, S|X)

= max
p(X)

H(S) +H(Y |S)−H(S|X)−H(Y |S,X)

= max
p(X)

H(Y |S)−H(Y |S,X) (S and X are independent)
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= max
p(X)

H(Y |S)−H(Z|S) (Y = X ⊕ S ⊕ Z, and Z is independent of X)

≤ 1−H(Z|S) (binary entropy is upper bounded by 1)

= 1− P (S = G)H(Z|S = G)− P (S = B)H(Z|S = B)

= 1− 2

3
h2(1/4)− 1

3
h2(1/3),

where the upper bound can be achieved by choosing X ∼ Bern(0.5). This expression
is exactly the same as (a). In other words, knowing the state at the decoder is just
as useful as knowing the state at both encoder and decoder! This magic happens
because the capacity achieving input for part (a) does not need to know the state of
the channel.

(d) In this problem Ca = Cc > Cb. Clearly, knowing the state is advantageous since it
reduces the uncertainty in the channel noise. I.e. H(Z|S) < H(Z). The capacity
of part (a) is largest because we have the entire state information available to both
encoder and decoder. In this problem, the additional beauty is that just knowing the
state at the decoder is sufficient to achieve the capacity of (a). The reason for this
is stated above, and is due to the fact that X ∼ Bern(0.5) achieves the capacity in
both (a) and (c).
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3. Modulo-3 additive noise channel (25 points)

(a) (5 points) Consider the modulo-3 additive white noise channel given by

Yi = Xi ⊕ Zi, (2)

where Xi, Zi, Yi all take values in the alphabet {0, 1, 2}, ⊕ denotes addition modulo-3,
and {Zi} are i.i.d. ∼ Z and independent of the channel input sequence {Xi}.

Xi

Zi

Yi

Figure 1: Ternary additive channel.

Show that the capacity of this channel is given by

C = log 3−H(Z). (3)

(b) (7 points) For ε ≥ 0 define

φ(ε) = max
Z:Pr(Z 6=0)≤ε

H(Z), (4)

where the maximization is over ternary random variables Z that take values in
{0, 1, 2} (and that satisfy the indicated constraint). Obtain φ(ε) explicity, as well
as the distribution of the random variable, Zε, that achieves the associated maximum.

[Distinguish between the ranges 0 ≤ ε < 2/3 and ε ≥ 2/3.]

(c) (5 points) Consider the problem of rate distortion coding of a memoryless source
Ui ∼ U , where the source and the reconstruction alphabets are both equal and
ternary, i.e., U = V = {0, 1, 2}. Let the distortion measure be Hamming loss

d(u, v) =

{
0, if u = v

1, otherwise.

For U, V that are jointly distributed such that E[d(U, V )] ≤ D, justify the following
chain of equalities and inequalities

I(U ;V )
(i)
= H(U)−H(U |V )
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(ii)
= H(U)−H(U 	 V |V )

(iii)

≥ H(U)−H(U 	 V )

(iv)

≥ H(U)− φ(D),

where 	 denotes subtraction modulo-3 and φ(D) was defined in Equation (4). Argue
why this implies that the rate distortion function of the source U is lower bounded
as

R(D) ≥ H(U)− φ(D). (5)

The above inequality is known as the ‘Shannon lower bound’ (specialized to our
setting of ternary alphabets and Hamming loss).

(d) (8 points) Show that when U is uniform (on {0, 1, 2}), the Shannon lower bound
holds with equality, i.e.,

R(D) = H(U)− φ(D) = log 3− φ(D), 0 ≤ D ≤ 1. (6)

[Hint: establish, by construction, existence of a joint distribution on U, V such that
U is uniform and the inequalities in Part (c) hold with equalities]

Solution:
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4. Gaussian source and channel (35 points)

• Gaussian Channel

Consider the parallel Gaussian channel which has two inputs X = (X1, X2) and two
outputs Y = (Y1, Y2), where

Y1 = X1 + Z1

Y2 = X2 + Z2,

and Zi ∼ N (0, σ2
i ), i = 1, 2, are independent Gaussian random variables. We impose

an average power constraint on the input X, which is

E[‖X‖2] = E[X2
1 +X2

2 ] ≤ P

(a) (10 points) Give an explicit formula for the capacity of this channel in terms of
P, σ2

1, σ
2
2.

(b) (7 points) Suppose you had access to capacity-achieving schemes for the scalar
AWGN channel whose capacity we derived in class. How would you use them
to construct capacity-achieving schemes for this parallel Gaussian channel?

• Gaussian Source

Consider a two-dimensional real valued source U = (U1, U2) such that U1 ∼ N (0, σ2
1),

and U2 ∼ N (0, σ2
2), and U1 is independent of U2. Let d : R2 × R2 → R be the

distortion measure

d(u, v) = ‖u− v‖2 = |u1 − v1|2 + |u2 − v2|2

We wish to compress i.i.d. copies of the source U , with average per-symbol distortion
no greater than D, i.e. the usual lossy compression setup discussed in class.

(a) (10 points) Evaluate the rate-distortion function R(D) explicitly in terms of the
problem parameters D, σ2

1, σ
2
2.

(b) (8 points) Suppose you had access to good lossy compressors for the scalar
Gaussian source whose rate-distortion function we derived in class. How would
you use them to construct good schemes for this two-dimenstional Gaussian
source?

Solution:

5. Gaussian Channel
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By Shannon’s channel coding theorem, the capacity of this parallel Gaussian channel is
given by

max
PX1,X2

:E[X2
1+X

2
2 ]≤P

I(X1, X2;Y1, Y2) = max
PX1,X2

:E[X2
1+X

2
2 ]≤P

(h(Y1, Y2)− h(Y1, Y2|X1, X2)) (7)

= max
PX1,X2

:E[X2
1+X

2
2 ]≤P

(h(Y1, Y2)− h(Y1|X1)− h(Y2|X2))

(8)

≤ max
PX1,X2

:E[X2
1+X

2
2 ]≤P

(h(Y1) + h(Y2)− h(Y1|X1)− h(Y2|X2))

(9)

= max
PX1,X2

:E[X2
1+X

2
2 ]≤P

(I(X1;Y1) + I(X2;Y2)) (10)

= max
P1,P2≥0,P1+P2≤P

(
max

PX1
:EX2

1≤P1

I(X1;Y1) + max
PX2

:EX2
2≤P2

I(X2;Y2)

)
(11)

= max
P1,P2≥0,P1+P2≤P

(
1

2
log

(
1 +

P1

σ2
1

)
+

1

2
log

(
1 +

P2

σ2
2

))
.

(12)

Note that in the above chain of inequalities, if we take X1 to be independent of X2, then
every inequality holds equality. Hence, it suffices to solve the last optimization problem,
whose solution is not only an upper bound, but also a lower bound of the capacity of this
parallel Gaussian channel.

Since the function 1
2

log(1 + x) is increasing for x ≥ 0, the maximum is attained when
P1 + P2 = P . Define the following function of P1 ∈ [0, P ]:

f(P1) =
1

2
log

(
1 +

P1

σ2
1

)
+

1

2
log

(
1 +

P − P1

σ2
2

)
. (13)

The function f(P1) is concave on [0, P ] and has only one maximum. Taking derivative
with respect to P1, we have

f ′(P1) =
1/σ2

1

2(1 + P1/σ2
1)

+
−1/σ2

2

2(1 + (P − P1)/σ2
2)
. (14)

Setting it to zero, we have P ∗1 =
P+σ2

2−σ2
1

2
. If |σ2

2 − σ2
1| ≤ P , P ∗1 ∈ [0, P ], the optimal

power allocation is given by

P ∗1 =
P + σ2

2 − σ2
1

2
(15)

P ∗2 =
P + σ2

1 − σ2
2

2
. (16)

If |σ2
1 − σ2

2| > P , without loss of generality we assume σ2
1 <= σ2

2. Then we should set
P ∗1 = P, P ∗2 = 0. In other words, if the quality of the two Gaussian channels are very
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different (in the sense that |σ2
1 − σ2

2| > P ), then we should allocate all the power to the
stronger channel.

To sum up, we have the capacity of this parallel Gaussian channel equal to

Cparallel(P ) =
1

2
log

(
1 +

P ∗1
σ2
1

)
+

1

2
log

(
1 +

P − P ∗1
σ2
2

)
, (17)

where

P ∗1 =


P+σ2

2−σ2
1

2
|σ2

1 − σ2
2| ≤ P

P |σ2
1 − σ2

2| > P, σ2
1 < σ2

2

0 |σ2
1 − σ2

2| > P, σ2
1 > σ2

2

(18)

Suppose we now have the capacity achieving schemes for single Gaussian channel. In
order to achieve the capacity of this parallel Gaussian channel, we first allocate power
P ∗1 to channel 1, power P − P ∗1 to channel 2. Then we take the codebook for Gaussian

channel with rate 1
2

log
(

1 +
P ∗1
σ2
1

)
and power P ∗1 for channel 1, and take codebook for

Gaussian channel with rate 1
2

log
(

1 +
P−P ∗1
σ2
2

)
and power P −P ∗1 for channel 2. The joint

codebook has rate Cparallel(P ).

6. Gaussian Source

By Shannon’s rate distortion theorem, the rate distortion function of this source is given
by

Rjoint(D) = min
PV1,V2|U1,U2

:E[|U1−V1|2+|U2−V2|2]≤D
I(U1, U2;V1, V2) (19)

= min
PV1,V2|U1,U2

:E[|U1−V1|2+|U2−V2|2]≤D
(h(U1, U2)− h(U1, U2|V1, V2)) (20)

= min
PV1,V2|U1,U2

:E[|U1−V1|2+|U2−V2|2]≤D
(h(U1) + h(U2)− h(U1|V1, V2)− h(U2|U1, V1, V2))

(21)

≥ min
PV1,V2|U1,U2

:E[|U1−V1|2+|U2−V2|2]≤D
(h(U1) + h(U2)− h(U1|V1)− h(U2|V2)) (22)

= min
PV1,V2|U1,U2

:E[|U1−V1|2+|U2−V2|2]≤D
(I(U1;V1) + I(U2;V2)) (23)

= min
D1≥0,D2≥0,D1+D2≤D

(
min

PV1|U1
:E[|U1−V1|2]≤D1

I(U1;V1) + min
PV2|U2

:E[|U2−V2|2]≤D2

I(U2;V2)

)
(24)

= min
D1≥0,D2≥0,D1+D2≤D

(
max{0, 1

2
log

σ2
1

D1

}+ max{0, 1

2
log

σ2
2

D2

}
)

(25)

We note that in the above chain of inequalities, if we take the joint test channel PV1,V2|U1,U2

to be of form PV1|U1PV2|U2 , all inequalities hold equality. Hence, it suffices to solves the
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last optimization problem and the resulting answer is not only a lower bound but also an
upper bound on the rate distortion function of this two dimensional source.

Since the function 1
2

log(1/x) is non-increasing for x > 0, the minimum is attained when
D1 +D2 = D. We define function

g(D1) = max{0, 1

2
log

σ2
1

D1

}+ max{0, 1

2
log

σ2
2

D −D1

}. (26)

When D1 ≤ σ2
1, D −D1 ≤ σ2

2, taking derivatives of g(D1), we obtain

g′(D1) =
1

2

(
1

D −D1

− 1

D1

)
. (27)

Setting it to zero, we have D1 = D/2. Hence, if D ≤ 2 min{σ2
1, σ

2
2}, the optimal distortion

allocation is

D∗1 = D/2, D∗2 = D/2. (28)

When σ2
1 + σ2

2 ≥ D > 2 min{σ2
1, σ

2
2}, without loss of generality we assume σ2

1 ≤ σ2
2.

Then we should use zero rate to describe U1, and allocate distortion D − σ2
1 to U2. If

D > σ2
1 + σ2

2, we simply use zero rate to describe both U1 and U2.

In other words, the joint rate distortion function is given by

Rjoint(D) =


1
2

log
2σ2

1

D
+ 1

2
log

2σ2
2

D
D ≤ 2 min{σ2

1, σ
2
2}

1
2

log
max{σ2

1 ,σ
2
2}

D−min{σ2
1 ,σ

2
2}

σ2
1 + σ2

2 ≥ D > 2 min{σ2
1, σ

2
2}

0 D > σ2
1 + σ2

2

(29)

Suppose we now have good lossy compressors for Gaussian source. To achieve the rate
distortion function of this two dimensional source, if D ≤ 2 min{σ2

1, σ
2
2}, we use the rate

distortion code for source U1 and U2 independently under distortion D/2 for each source.
If σ2

1 + σ2
2 ≥ D > 2 min{σ2

1, σ
2
2}, we simply use a constant 0 to encode the source with

smaller variance (say U1), and use rate distortion code to encode another source with
distortion D −min{σ2

1, σ
2
2}. If D > σ2

1 + σ2
2, we simply use constant 0 to describe both

U1 and U2.
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