EE276: Homework $#1$

Due on Friday Jan 19, 5pm - Gradescope entry code: 2P885N

Note: Mutual information (denoted $I(X; Y)$) will be covered in the Tuesday, Jan 16th lecture. You only need this concept for three sub-parts of this homework.

1. **Example of joint entropy.** Let $p(x, y)$ be given by

Find

- (a) $H(X), H(Y)$.
- (b) $H(X | Y), H(Y | X)$.
- (c) $H(X, Y)$.
- (d) $H(Y) H(Y | X)$.
- (e) $I(X;Y)$.
- (f) Draw a Venn diagram for the quantities in (a) through (e).

2. Entropy of Hamming Code.

Hamming code is a simple error-correcting code that can correct up to one error in a sequence of bits. Now consider information bits $X_1, X_2, X_3, X_4 \in \{0, 1\}$ chosen uniformly at random, together with check bits X_5, X_6, X_7 chosen to make the parity of the circles even.

(eg: $X_1 + X_2 + X_4 + X_7 = 0 \mod 2$)

Thus, for example,

becomes

That is, 1011 becomes 1011010.

(a) What is the entropy $H(X_1, X_2, ..., X_7)$ of $\mathbf{X} := (X_1, ..., X_7)$?

Now we make an error (or not) in one of the bits (or none). Let $Y = X \oplus e$, where **e** is equally likely to be $(1, 0, \ldots, 0), (0, 1, 0, \ldots, 0), \ldots, (0, 0, \ldots, 0, 1),$ or $(0, 0, \ldots, 0),$ and e is independent of X.

- (b) Show that one can recover the message X perfectly from Y. (Please provide a justification, detailed proof not required.)
- (c) What is $H(\mathbf{X}|\mathbf{Y})$?
- (d) What is $I(\mathbf{X}; \mathbf{Y})$?
- (e) What is the entropy of \mathbf{Y} ?
- 3. Entropy of functions of a random variable. Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps:

$$
H(X,g(X)) \stackrel{(a)}{=} H(X) + H(g(X) | X) \tag{1}
$$

$$
\stackrel{(b)}{=} H(X); \tag{2}
$$

$$
H(X,g(X)) \stackrel{(c)}{=} H(g(X)) + H(X \mid g(X)) \tag{3}
$$

$$
\stackrel{(d)}{\geq} H(g(X)).\tag{4}
$$

Thus $H(g(X)) \leq H(X)$.

- 4. Coin flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips required.
	- (a) Find the entropy $H(X)$ in bits. The following expressions may be useful:

$$
\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, \qquad \sum_{n=0}^{\infty} nr^n = \frac{r}{(1-r)^2}.
$$

- (b) A random variable X is drawn according to this distribution. Construct an "efficient" sequence of yes-no questions of the form, "Is X contained in the set S ?" that determine the value of X. Compare $H(X)$ to the expected number of questions required to determine X.
- 5. Minimum entropy. In the following, we use $H(p_1, ..., p_n) \equiv H(\mathbf{p})$ to denote the entropy $H(X)$ of a random variable X with alphabet $\mathcal{X} := \{1, \ldots, n\}$, i.e.,

$$
H(X) = -\sum_{i=1}^{n} p_i \log(p_i).
$$

What is the minimum value of $H(p_1, ..., p_n) = H(\mathbf{p})$ as **p** ranges over the set of *n*dimensional probability vectors? Find all p's which achieve this minimum.

6. Drawing with and without replacement. An urn contains r red, w white, and b black balls. Suppose we draw $k \geq 2$ balls from the urn. Let $\mathbf{X} := (X_1, \ldots, X_k)$, where X_i is the color of the *i*th ball drawn. Is the entropy of **X** larger when the balls are drawn from the urn with replacement or without replacement? Set it up and show why. (There is both a hard way and a relatively simple way to do this.)

7. Infinite entropy. [Bonus]

This problem shows that the entropy of a discrete random variable can be infinite. (In this question you can take log as the natural logarithm for simplicity.)

- (a) Let $A = \sum_{n=2}^{\infty} (n \log^2 n)^{-1}$. Show that A is finite by bounding the infinite sum by the integral of $(x \log^2 x)^{-1}$.
- (b) Show that the integer-valued random variable X distributed as: $P(X = n) = (An \log^2 n)^{-1}$ for $n = 2, 3, ...$ has entropy $H(X)$ given by:

$$
H(X) = \log A + \sum_{n=2}^{\infty} \frac{1}{An \log n} + \sum_{n=2}^{\infty} \frac{2 \log \log n}{An \log^2 n}
$$

(c) Show that the entropy $H(X) = +\infty$ (by showing that the sum $\sum_{n=2}^{\infty}$ 1 $\frac{1}{n \log n}$ diverges).