EE276: Homework #2

Due on Friday January 26, 5pm

Homework must be turned in online via Gradescope no later than 5pm on Friday, Jan 26. No late homework accepted.

1. Data Processing Inequality.

In this problem you'll prove the data processing inequality. Let's begin with the following definition:

Definition: The *conditional mutual information* of random variables X and Y given Z is defined by

$$I(X;Y|Z) := H(X|Z) - H(X|Y,Z)$$
$$= \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y|z)}{p(x|z)p(y|z)}$$

We say that random variables X, Y and Z form a Markov triplet (X - Y - Z) if p(z|y) = p(z|y, x), and as a corollary p(x|y) = p(x|y, z).

Show that, if X, Y, Z form a Markov triplet (X - Y - Z), then:

- (a) H(X|Y) = H(X|Y,Z) and H(Z|Y) = H(Z|X,Y)
- (b) $H(X|Y) \le H(X|Z)$
- (c) $I(X;Y) \ge I(X;Z)$ and $I(Y;Z) \ge I(X;Z)$
- (d) I(X; Z|Y) = 0

2. Two looks.

Let X, Y_1 , and Y_2 be binary random variables. Assume that $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$.

- (a) Does it follow that $I(X; Y_1, Y_2) = 0$? Prove or provide a counterexample.
- (b) Does it follow that $I(Y_1; Y_2) = 0$? Prove or provide a counterexample.

3. Prefix and Uniquely Decodable codes

Consider the following code:

u	Codeword
a	1 0
b	0 0
с	11
d	1 1 0

(a) Is this a Prefix code?

- (b) Argue that this code is uniquely decodable, by providing an algorithm for the decoding.
- 4. Relative entropy and the cost of miscoding. Let the random variable X defined on $\{1, 2, 3, 4, 5, 6\}$ according to pmf p. Let p and another pmf q be

Symbol	p(x)	q(x)	$C_1(x)$	$C_2(x)$
1	1/2	1/2	0	0
2	1/8	1/4	100	10
3	1/8	1/16	101	1100
4	1/8	1/16	110	1101
5	1/16	1/16	1110	1110
6	1/16	1/16	1111	1111

- (a) Calculate H(X), D(p||q) and D(q||p).
- (b) The last two columns above represent codes for the random variable. Verify that codes C_1 and C_2 are optimal under the respective distributions p and q.
- (c) Now assume that we use C_2 to code X (as we assumed with pmf p). What is the average length of the codewords? By how much does it exceed the entropy H(X), i.e., what is the redundancy of the code?
- (d) What is the redundancy if we use code C_1 for a random variable Y with pmf q?
- 5. The AEP and source coding. A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities p(1) = 0.005 and p(0) = 0.995. The digits are taken 100 at a time and a binary codeword is provided for every sequence of 100 digits containing three or fewer ones.
 - (a) Assuming that all codewords are the same length, find the minimum length required to provide codewords for all sequences with three or fewer ones.
 - (b) Calculate the probability of observing a source sequence for which no codeword has been assigned.
 - (c) Use Chebyshev's inequality to bound the probability of observing a source sequence for which no codeword has been assigned. Compare this bound with the actual probability computed in part (b).
 - (d) If the codewords for sequences with four or more ones were taken as simply the sequences themselves, give a bound on the expected compression rate of the code. Compare this with the entropy rate of the source.

6. **AEP**

Let X_i for $i \in \{1, ..., n\}$ be an i.i.d. sequence from the p.m.f. p(x) with alphabet $\mathcal{X} = \{1, 2, ..., m\}$. Denote the expectation and entropy of X by $\mu := \mathbb{E}[X]$ and $H := -\sum p(x) \log p(x)$ respectively.

For $\epsilon > 0$, recall the definition of the typical set

$$A_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} \log p(x^n) - H \right| \le \epsilon \right\}$$

and define the following set

$$B_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| \frac{1}{n} \sum_{i=1}^n x_i - \mu \right| \le \epsilon \right\}.$$

In what follows, $\epsilon > 0$ is fixed.

- (a) Does $\mathbb{P}\left(X^n \in A_{\epsilon}^{(n)}\right) \to 1 \text{ as } n \to \infty$?
- (b) Does $\mathbb{P}\left(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}\right) \to 1 \text{ as } n \to \infty$? (c) Show that for all n,

$$|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \le 2^{n(H+\epsilon)}.$$

(d) Show that for n sufficiently large.

$$|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \ge (\frac{1}{2})2^{n(H-\epsilon)}.$$

7. An AEP-like limit and the AEP (Bonus)

(a) Let X_1, X_2, \ldots be i.i.d. drawn according to probability mass function p(x). Find the limit in probability as $n \to \infty$ of

$$p(X_1, X_2, \ldots, X_n)^{\frac{1}{n}}.$$

(b) Let X_1, X_2, \ldots be an i.i.d. sequence of discrete random variables with entropy H(X). Let

$$C_n(t) = \{x^n \in \mathcal{X}^n : p(x^n) \ge 2^{-nt}\}$$

denote the subset of *n*-length sequences with probabilities $\geq 2^{-nt}$.

- i. Show that $|C_n(t)| \leq 2^{nt}$.
- ii. What is $\lim_{n\to\infty} \mathbb{P}(X^n \in C_n(t))$ when t < H(X)? And when t > H(X)?