
EE276: Homework #2
Due on Friday January 26, 5pm

Homework must be turned in online via Gradescope no later than 5pm on Friday, Jan 26.
No late homework accepted.

1. Data Processing Inequality.
In this problem you’ll prove the data processing inequality. Let’s begin with the fol-
lowing definition:

Definition: The conditional mutual information of random variables X and Y given
Z is defined by

I(X;Y |Z) := H(X|Z)−H(X|Y, Z)

=
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
.

We say that random variables X, Y and Z form a Markov triplet (X − Y − Z) if
p(z|y) = p(z|y, x), and as a corollary p(x|y) = p(x|y, z).
Show that, if X, Y , Z form a Markov triplet (X − Y − Z), then:

(a) H(X|Y ) = H(X|Y, Z) and H(Z|Y ) = H(Z|X, Y )

(b) H(X|Y ) ≤ H(X|Z)
(c) I(X;Y ) ≥ I(X;Z) and I(Y ;Z) ≥ I(X;Z)

(d) I(X;Z|Y ) = 0

2. Two looks.
LetX, Y1, and Y2 be binary random variables. Assume that I(X;Y1) = 0 and I(X;Y2) =
0.

(a) Does it follow that I(X;Y1, Y2) = 0? Prove or provide a counterexample.

(b) Does it follow that I(Y1;Y2) = 0? Prove or provide a counterexample.

3. Prefix and Uniquely Decodable codes
Consider the following code:

u Codeword
a 1 0
b 0 0
c 1 1
d 1 1 0

(a) Is this a Prefix code?
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(b) Argue that this code is uniquely decodable, by providing an algorithm for the
decoding.

4. Relative entropy and the cost of miscoding. Let the random variable X defined
on {1, 2, 3, 4, 5, 6} according to pmf p. Let p and another pmf q be

Symbol p(x) q(x) C1(x) C2(x)
1 1/2 1/2 0 0
2 1/8 1/4 100 10
3 1/8 1/16 101 1100
4 1/8 1/16 110 1101
5 1/16 1/16 1110 1110
6 1/16 1/16 1111 1111

(a) Calculate H(X), D(p||q) and D(q||p).
(b) The last two columns above represent codes for the random variable. Verify that

codes C1 and C2 are optimal under the respective distributions p and q.

(c) Now assume that we use C2 to code X (as we assumed with pmf p). What is the
average length of the codewords? By how much does it exceed the entropy H(X),
i.e., what is the redundancy of the code?

(d) What is the redundancy if we use code C1 for a random variable Y with pmf q?

5. The AEP and source coding. A discrete memoryless source emits a sequence of
statistically independent binary digits with probabilities p(1) = 0.005 and p(0) = 0.995.
The digits are taken 100 at a time and a binary codeword is provided for every sequence
of 100 digits containing three or fewer ones.

(a) Assuming that all codewords are the same length, find the minimum length re-
quired to provide codewords for all sequences with three or fewer ones.

(b) Calculate the probability of observing a source sequence for which no codeword
has been assigned.

(c) Use Chebyshev’s inequality to bound the probability of observing a source se-
quence for which no codeword has been assigned. Compare this bound with the
actual probability computed in part (b).

(d) If the codewords for sequences with four or more ones were taken as simply the
sequences themselves, give a bound on the expected compression rate of the code.
Compare this with the entropy rate of the source.

6. AEP
Let Xi for i ∈ {1, . . . , n} be an i.i.d. sequence from the p.m.f. p(x) with alphabet
X = {1, 2, . . . ,m}. Denote the expectation and entropy of X by µ := E[X] and
H := −

∑
p(x) log p(x) respectively.
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For ϵ > 0, recall the definition of the typical set

A(n)
ϵ =

{
xn ∈ X n :

∣∣∣∣− 1

n
log p(xn)−H

∣∣∣∣ ≤ ϵ

}
and define the following set

B(n)
ϵ =

{
xn ∈ X n :

∣∣∣∣∣ 1n
n∑

i=1

xi − µ

∣∣∣∣∣ ≤ ϵ

}
.

In what follows, ϵ > 0 is fixed.

(a) Does P
(
Xn ∈ A

(n)
ϵ

)
→ 1 as n → ∞?

(b) Does P
(
Xn ∈ A

(n)
ϵ ∩B

(n)
ϵ

)
→ 1 as n → ∞?

(c) Show that for all n,
|A(n)

ϵ ∩B(n)
ϵ | ≤ 2n(H+ϵ).

(d) Show that for n sufficiently large.

|A(n)
ϵ ∩B(n)

ϵ | ≥ (
1

2
)2n(H−ϵ).

7. An AEP-like limit and the AEP (Bonus)

(a) Let X1, X2, . . . be i.i.d. drawn according to probability mass function p(x). Find
the limit in probability as n → ∞ of

p(X1, X2, . . . , Xn)
1
n .

(b) Let X1, X2, . . . be an i.i.d. sequence of discrete random variables with entropy
H(X). Let

Cn(t) = {xn ∈ X n : p(xn) ≥ 2−nt}

denote the subset of n-length sequences with probabilities ≥ 2−nt.

i. Show that |Cn(t)| ≤ 2nt.

ii. What is limn→∞ P(Xn ∈ Cn(t)) when t < H(X)? And when t > H(X)?
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