EE276: Homework $#2$ Solutions

1. Data Processing Inequality.

The random variables X, Y and Z form a Markov triplet $(X - Y - Z)$ if $p(z|y) =$ $p(z|y, x)$, and as a corollary $p(x|y) = p(x|y, z)$. If X, Y, Z form a Markov triplet $(X - Y - Z)$, show that:

- (a) $H(X|Y) = H(X|Y, Z)$ and $H(Z|Y) = H(Z|X, Y)$
- (b) $H(X|Y) \leq H(X|Z)$
- (c) $I(X;Y) \geq I(X;Z)$ and $I(Y;Z) \geq I(X;Z)$
- (d) $I(X;Z|Y) = 0$

The following definition may be useful:

Definition: The *conditional mutual information* of random variables X and Y given Z is defined by

$$
I(X;Y|Z) = H(X|Z) - H(X|Y,Z)
$$

$$
= \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y|z)}{p(x|z)p(y|z)}
$$

Solution: Data Processing Inequality.

(a)

$$
H(X|Y) = \sum_{x,y} -p(x,y) \log(p(x|y))
$$

=
$$
\sum_{x,y,z} -p(x,y,z) \log(p(x|y))
$$

=
$$
\sum_{x,y,z} -p(x,y,z) \log(p(x|y,z))
$$

=
$$
H(X|Y,Z)
$$

where the third equality uses the fact that X and Z are conditionally independent given Y. A similar argument can be used to show $H(Z|Y) = H(Z|X, Y)$.

- (b) $H(X|Y) = H(X|Y, Z) \le H(X|Z).$
- (c) $I(X; Y) = H(X) H(X|Y) \ge H(X) H(X|Z) = I(X; Z).$
- (d) We showed that $H(X|Y) = H(X|Z, Y)$, therefore, $I(X;Z|Y) = H(X|Y)$ $H(X|Z, Y) = 0.$

2. Two looks.

Let X, Y₁, and Y₂ be binary random variables. Assume that $I(X; Y_1) = 0$ and $I(X; Y_2) =$ 0.

- (a) Does it follow that $I(X; Y_1, Y_2) = 0$? Prove or provide a counterexample.
- (b) Does it follow that $I(Y_1; Y_2) = 0$? Prove or provide a counterexample.

Solution: Two looks

(a) The answer is "no". Although at first the conjecture seems reasonable enough– after all, if Y_1 gives you no information about X, and if Y_2 gives you no information about X , then why should the two of them together give any information? But remember, it is NOT the case that $I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2)$. The chain rule for information says instead that $I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2|Y_1)$. The chain rule gives us reason to be skeptical about the conjecture.

This problem is reminiscent of the well-known fact in probability that pair-wise independence of three random variables is not sufficient to guarantee that all three are mutually independent. $I(X; Y_1) = 0$ is equivalent to saying that X and Y_1 are independent. Similarly for X and Y_2 . But just because X is pairwise independent with each of Y_1 and Y_2 , it does not follow that X is independent of the vector (Y_1, Y_2) .

Here is a simple counterexample. Let Y_1 and Y_2 be independent fair coin flips. And let $X = Y_1$ XOR Y_2 . X is pairwise independent of both Y_1 and Y_2 , but obviously not independent of the vector (Y_1, Y_2) , since X is uniquely determined once you know (Y_1, Y_2) .

(b) Again the answer is "no". Y_1 and Y_2 can be arbitrarily dependent with each other and both still be independent of X. For example, let $Y_1 = Y_2$ be two observations of the same fair coin flip, and X an independent fair coin flip. Then $I(X; Y_1) = I(X; Y_2) = 0$ because X is independent of both Y_1 and Y_2 . However, $I(Y_1; Y_2) = H(Y_1) - H(Y_1|Y_2) = H(Y_1) = 1.$

3. Prefix and Uniquely Decodable codes

Consider the following code:

- (a) Is this a Prefix code?
- (b) Argue that this code is uniquely decodable, by providing an algorithm for the decoding.

Solution: Prefix and Uniquely Decodable

- (a) No. The codeword of c is a prefix of the codeword of d.
- (b) We decode the encoded symbols from left to right. At any stage,
	- If the next two bits are 10, output α and move to the third bit.
	- If the next two bits are 00, output b and move to the third bit.
	- If the next two bits are 11, look at the third bit:
		- $-$ If it is 1, output c and move to the third bit
		- If it is 0, count the number of 0's after the 11:
			- $*$ If even (say 2m zeros), decode to $cb \dots b$ with m b's and move to the bit after the 0's.
			- $∗$ If odd (say 2m + 1 zeros), decode to db . . b with m b's and move to the bit after the 0's.

Some examples with their decoding:

- 11011. It is not possible to split this string as $11 0 11$ because there is no codeword "0". Therefore the only way is: $110 - 11$.
- 1110. It is not possible to split this string as $1 11 0$ or $1 110$ because there is no codeword "0" or "1". Therefore the only way is: $11 - 10$.
- 110010. It is not possible to split this string as $110 0 10$ because there is no codeword "0". Therefore the only way is: $11 - 00 - 10$.

For a more elaborate discussion on this topic read Problem $5.27¹$. In this problem,the Sardinas-Patterson test of unique decodability is explained.

4. Relative entropy and the cost of miscoding. Let the random variable X defined on $\{1, 2, 3, 4, 5, 6\}$ according to pmf p. Let p and another pmf q be

- (a) Calculate $H(X)$, $D(p||q)$ and $D(q||p)$.
- (b) The last two columns above represent codes for the random variable. Verify that codes C_1 and C_2 are optimal under the respective distributions p and q.
- (c) Now assume that we use C_2 to code X (as we assumed with pmf p). What is the average length of the codewords? By how much does it exceed the entropy $H(X)$, i.e., what is the redundancy of the code?
- (d) What is the redundancy if we use code C_1 for a random variable Y with pmf q ?

Solution:

¹ from: T.M. Cover and J.A. Thomas, "Elements of Information Theory", Second Edition, 2006.

(a) For $X \sim p$

$$
H(X) = \frac{1}{2}\log 2 + \frac{1}{8}\log 8 + \frac{1}{8}\log 8 + \frac{1}{8}\log 8 + \frac{1}{16}\log 16 + \frac{1}{16}\log 16
$$

= $\frac{1}{2} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{4}{16} + \frac{4}{16}$
= 2.125.

For $X\sim q$

$$
H(X) = \frac{1}{2}\log 2 + \frac{1}{4}\log 4 + \frac{1}{16}\log 16 + \frac{1}{16}\log 16 + \frac{1}{16}\log 16 + \frac{1}{16}\log 16
$$

= $\frac{1}{2} + \frac{2}{4} + \frac{4}{16} + \frac{4}{16} + \frac{4}{16} + \frac{4}{16}$
= 2.

Lets calculate $D(p||q),$

$$
D(p||q) = \frac{1}{2}\log 1 + \frac{1}{8}\log \frac{1}{2} + \frac{1}{8}\log 2 + \frac{1}{8}\log 2 + \frac{1}{16}\log 1 + \frac{1}{16}\log 1
$$

= $\frac{1}{8}\log \frac{1}{2} + \frac{1}{8}\log 2 + \frac{1}{8}\log 2$
= 1/8.

Similarly

$$
D(q||p) = \frac{1}{2}\log 2 + \frac{1}{4}\log 2 + \frac{1}{16}\log \frac{1}{2} + \frac{1}{16}\log \frac{1}{2} + \frac{1}{16}\log 1 + \frac{1}{16}\log 1
$$

= $\frac{1}{4}\log 2 + \frac{1}{16}\log \frac{1}{2} + \frac{1}{16}\log \frac{1}{2}$
= $\frac{1}{4} - \frac{1}{16} - \frac{1}{16}$
= $\frac{1}{8}$.

(b) For $X \sim p$, the expected length of C_1 is

$$
E[\ell(X)] = \frac{1}{2} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{4}{16} + \frac{4}{16}
$$

= 2.125
= $H(X)$

and for $X\sim q$, the expected length of C_2 is

$$
E[\ell(X)] = \frac{1}{2} + \frac{2}{4} + \frac{4}{16} + \frac{4}{16} + \frac{4}{16} + \frac{4}{16}
$$

= 2
= $H(X)$

and thus both C_1 and C_2 are optimal codes.

(c) Average length of the codeword when C_2 is assigned to $X \sim p$ is

$$
E[\ell(X)] = \frac{1}{2} + \frac{2}{8} + \frac{4}{8} + \frac{4}{8} + \frac{4}{16} + \frac{4}{16}
$$

= 2.25
= $H(X) + .125$
= $H(X) + D(p||q)!$

(d) Similarly the average length of the codeword when C_1 is assigned to $X \sim q$ is

$$
E[\ell(X)] = \frac{1}{2} + \frac{3}{4} + \frac{3}{16} + \frac{3}{16} + \frac{4}{16} + \frac{4}{16}
$$

= 2.125
= $H(X) + .125$
= $H(X) + D(q||p)!$

- 5. The AEP and source coding. A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities $p(1) = 0.005$ and $p(0) = 0.995$. The digits are taken 100 at a time and a binary codeword is provided for every sequence of 100 digits containing three or fewer ones.
	- (a) Assuming that all codewords are the same length, find the minimum length required to provide codewords for all sequences with three or fewer ones.
	- (b) Calculate the probability of observing a source sequence for which no codeword has been assigned.
	- (c) Use Chebyshev's inequality to bound the probability of observing a source sequence for which no codeword has been assigned. Compare this bound with the actual probability computed in part (b).
	- (d) If the codewords for sequences with four or more ones were taken as simply the sequences themselves, give a bound on the expected compression rate of the code. Compare this with the entropy rate of the source.

Solution: The AEP and source coding.

(a) The number of 100-bit binary sequences with three or fewer ones is

$$
\binom{100}{0} + \binom{100}{1} + \binom{100}{2} + \binom{100}{3} = 1 + 100 + 4950 + 161700 = 166751.
$$

The required codeword length is $\lceil \log_2 166751 \rceil = 18$. (Note that $H(0.005) =$ 0.0454, so 18 is quite a bit larger than the 4.5 bits of entropy.)

(b) The probability that a 100-bit sequence has three or fewer ones is

$$
\sum_{i=0}^{3} {100 \choose i} (0.005)^i (0.995)^{100-i} = 0.60577 + 0.30441 + 0.7572 + 0.01243 = 0.99833
$$

Thus the probability that the sequence that is generated cannot be encoded is $1 - 0.99833 = 0.00167.$

(c) In the case of a random variable S_n that is the sum of n i.i.d. random variables X_1, X_2, \ldots, X_n , Chebyshev's inequality states that

$$
\Pr(|S_n - n\mu| \ge \epsilon) \ \le \ \frac{n\sigma^2}{\epsilon^2} \,,
$$

where μ and σ^2 are the mean and variance of X_i . (Therefore $n\mu$ and $n\sigma^2$ are the mean and variance of S_n .) In this problem, $n = 100$, $\mu = 0.005$, and $\sigma^2 =$ $(0.005)(0.995)$. Note that $S_{100} \geq 4$ if and only if $|S_{100} - 100(0.005)| \geq 3.5$, so we should choose $\epsilon = 3.5$. Then

$$
Pr(S_{100} \ge 4) \le \frac{100(0.005)(0.995)}{(3.5)^2} \approx 0.04061.
$$

This bound is much larger than the actual probability 0.00167.

(d) Let the random variable L be defined as the length of the resulting codeword. Then the compression rate is

$$
\frac{1}{n}E(L) = \frac{1}{100} (18 \times 0.99833 + 100 \times 0.00167) = 0.181369.
$$
 (1)

Meanwhile, if Y is the random string of length $n = 100$ at the source, then the entropy rate is given by

$$
\frac{1}{n}H(Y) = H(p) = 0.0454\tag{2}
$$

where $H(p)$ is the binary entropy.

6. AEP

Let X_i for $i \in \{1, \ldots, n\}$ be an i.i.d. sequence from the p.m.f. $p(x)$ with alphabet $\mathcal{X} = \{1, 2, \ldots, m\}.$ Denote the expectation and entropy of X by $\mu := \mathbb{E}[X]$ and $H := -\sum p(x) \log p(x)$ respectively.

For $\epsilon > 0$, recall the definition of the typical set

$$
A_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} \log p(x^n) - H \right| \le \epsilon \right\}
$$

and define the following set

$$
B_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| \frac{1}{n} \sum_{i=1}^n x_i - \mu \right| \leq \epsilon \right\}.
$$

In what follows, $\epsilon > 0$ is fixed.

(a) Does $\mathbb{P}\left(X^n \in A_{\epsilon}^{(n)}\right) \to 1$ as $n \to \infty$?

- (b) Does $\mathbb{P}\left(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}\right) \to 1$ as $n \to \infty$?
- (c) Show that for all n ,

$$
|A_\epsilon^{(n)}\cap B_\epsilon^{(n)}|\leq 2^{n(H+\epsilon)}.
$$

(d) Show that for n sufficiently large.

$$
|A_\epsilon^{(n)}\cap B_\epsilon^{(n)}|\geq (\frac{1}{2})2^{n(H-\epsilon)}.
$$

Solution: AEP

- (a) Yes, by the AEP for discrete random variables the probability $Xⁿ$ is typical goes to 1.
- (b) Yes, by the Law of Large Numbers $P(X^n \in B_{\epsilon}^{(n)}) \to 1$. So there exists $\epsilon > 0$ and N_1 such that $P(X^n \in A_{\epsilon}^{(n)}) > 1 - \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$ for all $n > N_1$, and there exists N_2 such that $P(X^n \in B_{\epsilon}^{(n)}) > 1 - \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$ for all $n > N_2$. So for all $n > \max(N_1, N_2)$:

$$
P(X^{n} \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}) = P(X^{n} \in A_{\epsilon}^{(n)}) + P(X^{n} \in B_{\epsilon}^{(n)}) - P(X^{n} \in A_{\epsilon}^{(n)} \cup B_{\epsilon}^{(n)})
$$

> $1 - \frac{\epsilon}{2} + 1 - \frac{\epsilon}{2} - 1$
= $1 - \epsilon$

So for any $\epsilon > 0$ there exists $N = \max(N_1, N_2)$ such that $P(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}) >$ $1 - \epsilon$ for all $n > N$, therefore $P(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}) \to 1$.

- (c) By the law of total probability $\sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} p(x^n) \leq 1$. Also, for $x^n \in A_{\epsilon}^{(n)}$, from Theorem 3.1.2 in the text, $p(x^n) \geq 2^{-n(H+\epsilon)}$. Combining these two equations gives $1 \geq \sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} p(x^n) \geq \sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} 2^{-n(H+\epsilon)} = |A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| 2^{-n(H+\epsilon)}.$ Multiplying through by $2^{n(H+\epsilon)}$ gives the result $|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \leq 2^{n(H+\epsilon)}$.
- (d) Since from (b) $P\{X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}\} \to 1$, there exists N such that $P\{X^n \in A_{\epsilon}^{(n)}\}$ $A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)} \} \geq \frac{1}{n}$ for all $n > N$. From Theorem 3.1.2 in the text, for $x^n \in A_{\epsilon}^{(n)}$, $p(x^n) \leq 2^{-n(H-\epsilon)}$. So combining these two gives $\frac{1}{2} \leq \sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} p(x^n) \leq$ $\sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} 2^{-n(H-\epsilon)} = |A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| 2^{-n(H-\epsilon)}$. Multiplying through by $2^{n(H-\epsilon)}$ gives the result $|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \geq (\frac{1}{2})$ $\frac{1}{2}$) $2^{n(H-\epsilon)}$ for *n* sufficiently large.

7. An AEP-like limit and the AEP (Bonus)

(a) Let X_1, X_2, \ldots be i.i.d. drawn according to probability mass function $p(x)$. Find the limit in probability as $n \to \infty$ of

$$
p(X_1,X_2,\ldots,X_n)^{\frac{1}{n}}.
$$

(b) Let X_1, X_2, \ldots be an i.i.d. sequence of discrete random variables with entropy $H(X)$. Let

$$
C_n(t) = \{x^n \in \mathcal{X}^n : p(x^n) \ge 2^{-nt}\}
$$

denote the subset of *n*-length sequences with probabilities $\geq 2^{-nt}$.

- i. Show that $|C_n(t)| \leq 2^{nt}$.
- ii. What is $\lim_{n\to\infty} P(X^n \in C_n(t))$ when $t < H(X)$? And when $t > H(X)$?

Solution: An AEP-like limit and the AEP.

(a) By the AEP, we know that for every $\delta > 0$,

$$
\lim_{n \to \infty} P\left(-H(X) - \delta \le \frac{1}{n}\log p(X_1, X_2, \dots, X_n) \le -H(X) + \delta\right) = 1
$$

Now, fix $\epsilon > 0$ (sufficiently small) and choose $\delta = \min\{\log(1 + 2^{H(X)}\epsilon), -\log(1 - \epsilon)\}$ $2^{H(X)}\epsilon$ }. Then, $2^{-H(X)}(2^{\delta}-1) \leq \epsilon$ and $2^{-H(X)}(2^{-\delta}-1) \geq -\epsilon$. Thus,

$$
-H(X) - \delta \le \frac{1}{n} \log p(X_1, X_2, \dots, X_n) \le -H(X) + \delta
$$

\n
$$
\implies 2^{-H(X)} 2^{-\delta} \le (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} \le 2^{-H(X)} 2^{\delta}
$$

\n
$$
\implies 2^{-H(X)} (2^{-\delta} - 1) \le (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} - 2^{-H(X)} \le 2^{-H(X)} (2^{\delta} - 1)
$$

\n
$$
\implies -\epsilon \le (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} - 2^{-H(X)} \le \epsilon
$$

This along with AEP implies that $P(|p(X_1, X_2, ..., X_n)|^{\frac{1}{n}} - 2^{-H(X)}| \leq \epsilon) \to 1$ for all $\epsilon > 0$ and hence $(p(X_1, X_2, \ldots, X_n))^{\frac{1}{n}}$ converges to $2^{-H(X)}$ in probability. This proof can be shortened by directly invoking the continuous mapping theorem, which says that if Z_n converges to Z in probability and f is a continuous function, then $f(Z_n)$ converges to $f(Z)$ in probability.

Alternate proof (using Strong LLN): X_1, X_2, \ldots , i.i.d. $\sim p(x)$. Hence $\log(X_i)$ are also i.i.d. and

$$
\lim (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} = \lim_{n \to \infty} 2^{\log(p(X_1, X_2, \dots, X_n))^{\frac{1}{n}}}
$$

= $2^{\lim_{n} \frac{1}{n} \sum \log p(X_i)}$
= $2^{-H(X)}$

where the second equality uses the continuity of the function 2^x and the third equality uses the strong law of large numbers. Thus, $(p(X_1, X_2, \ldots, X_n))^{\frac{1}{n}}$ converges to $2^{-H(X)}$ alomost surely, and hence in probability.

(b) i.

$$
1 \geq \sum_{x^n \in C_n(t)} p(x^n)
$$

\n
$$
\geq \sum_{x^n \in C_n(t)} 2^{-nt}
$$

\n
$$
= |C_n(t)| 2^{-nt}
$$

Thus, $|C_n(t)| \leq 2^{nt}$.

ii. AEP immediately implies that $\lim_{n\to\infty} P(X^n \in C_n(t)) = 0$ for $t < H(X)$ and $\lim_{n\to\infty} P(X^n \in C_n(t)) = 1$ for $t > H(X)$.