
EE276: Homework #2 Solutions

1. Data Processing Inequality.
The random variables X, Y and Z form a Markov triplet (X − Y − Z) if p(z|y) =
p(z|y, x), and as a corollary p(x|y) = p(x|y, z). If X, Y , Z form a Markov triplet
(X − Y − Z), show that:

(a) H(X|Y ) = H(X|Y, Z) and H(Z|Y ) = H(Z|X, Y )

(b) H(X|Y ) ≤ H(X|Z)
(c) I(X;Y ) ≥ I(X;Z) and I(Y ;Z) ≥ I(X;Z)

(d) I(X;Z|Y ) = 0

The following definition may be useful:

Definition: The conditional mutual information of random variables X and Y given
Z is defined by

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

=
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)

Solution: Data Processing Inequality.

(a)

H(X|Y ) =
∑
x,y

−p(x, y) log(p(x|y))

=
∑
x,y,z

−p(x, y, z) log(p(x|y))

=
∑
x,y,z

−p(x, y, z) log(p(x|y, z))

= H(X|Y, Z)

where the third equality uses the fact that X and Z are conditionally independent
given Y . A similar argument can be used to show H(Z|Y ) = H(Z|X, Y ).

(b) H(X|Y ) = H(X|Y, Z) ≤ H(X|Z).
(c) I(X;Y ) = H(X)−H(X|Y ) ≥ H(X)−H(X|Z) = I(X;Z).

(d) We showed that H(X|Y ) = H(X|Z, Y ), therefore, I(X;Z|Y ) = H(X|Y ) −
H(X|Z, Y ) = 0.

2. Two looks.
LetX, Y1, and Y2 be binary random variables. Assume that I(X;Y1) = 0 and I(X;Y2) =
0.
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(a) Does it follow that I(X;Y1, Y2) = 0? Prove or provide a counterexample.

(b) Does it follow that I(Y1;Y2) = 0? Prove or provide a counterexample.

Solution: Two looks

(a) The answer is “no”. Although at first the conjecture seems reasonable enough–
after all, if Y1 gives you no information aboutX, and if Y2 gives you no information
about X, then why should the two of them together give any information? But
remember, it is NOT the case that I(X;Y1, Y2) = I(X;Y1) + I(X;Y2). The chain
rule for information says instead that I(X;Y1, Y2) = I(X;Y1) + I(X;Y2|Y1). The
chain rule gives us reason to be skeptical about the conjecture.

This problem is reminiscent of the well-known fact in probability that pair-wise
independence of three random variables is not sufficient to guarantee that all three
are mutually independent. I(X;Y1) = 0 is equivalent to saying that X and Y1 are
independent. Similarly for X and Y2. But just because X is pairwise independent
with each of Y1 and Y2, it does not follow that X is independent of the vector
(Y1, Y2).

Here is a simple counterexample. Let Y1 and Y2 be independent fair coin flips.
And let X = Y1 XOR Y2. X is pairwise independent of both Y1 and Y2, but
obviously not independent of the vector (Y1, Y2), since X is uniquely determined
once you know (Y1, Y2).

(b) Again the answer is “no”. Y1 and Y2 can be arbitrarily dependent with each
other and both still be independent of X. For example, let Y1 = Y2 be two
observations of the same fair coin flip, and X an independent fair coin flip. Then
I(X;Y1) = I(X;Y2) = 0 because X is independent of both Y1 and Y2. However,
I(Y1;Y2) = H(Y1)−H(Y1|Y2) = H(Y1) = 1.

3. Prefix and Uniquely Decodable codes
Consider the following code:

u Codeword
a 1 0
b 0 0
c 1 1
d 1 1 0

(a) Is this a Prefix code?

(b) Argue that this code is uniquely decodable, by providing an algorithm for the
decoding.

Solution: Prefix and Uniquely Decodable

Page 2 of 9 EE 276, Winter Quarter 2024



(a) No. The codeword of c is a prefix of the codeword of d.

(b) We decode the encoded symbols from left to right. At any stage,

• If the next two bits are 10, output a and move to the third bit.

• If the next two bits are 00, output b and move to the third bit.

• If the next two bits are 11, look at the third bit:

– If it is 1, output c and move to the third bit

– If it is 0, count the number of 0’s after the 11:

∗ If even (say 2m zeros), decode to cb . . . b with m b’s and move to the
bit after the 0’s.

∗ If odd (say 2m+1 zeros), decode to db . . . b with m b’s and move to the
bit after the 0’s.

Some examples with their decoding:

• 11011. It is not possible to split this string as 11− 0− 11 because there is no
codeword “0” . Therefore the only way is: 110− 11.

• 1110. It is not possible to split this string as 1 − 11 − 0 or 1 − 110 because
there is no codeword “0” or “1” . Therefore the only way is: 11− 10.

• 110010. It is not possible to split this string as 110− 0− 10 because there is
no codeword “0” . Therefore the only way is: 11− 00− 10.

For a more elaborate discussion on this topic read Problem 5.271. In this prob-
lem,the Sardinas-Patterson test of unique decodability is explained.

4. Relative entropy and the cost of miscoding. Let the random variable X defined
on {1, 2, 3, 4, 5, 6} according to pmf p. Let p and another pmf q be

Symbol p(x) q(x) C1(x) C2(x)
1 1/2 1/2 0 0
2 1/8 1/4 100 10
3 1/8 1/16 101 1100
4 1/8 1/16 110 1101
5 1/16 1/16 1110 1110
6 1/16 1/16 1111 1111

(a) Calculate H(X), D(p||q) and D(q||p).
(b) The last two columns above represent codes for the random variable. Verify that

codes C1 and C2 are optimal under the respective distributions p and q.

(c) Now assume that we use C2 to code X (as we assumed with pmf p). What is the
average length of the codewords? By how much does it exceed the entropy H(X),
i.e., what is the redundancy of the code?

(d) What is the redundancy if we use code C1 for a random variable Y with pmf q?

Solution:

1from: T.M. Cover and J.A. Thomas, “Elements of Information Theory”, Second Edition,2006.
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(a) For X ∼ p

H(X) =
1

2
log 2 +

1

8
log 8 +

1

8
log 8 +

1

8
log 8 +

1

16
log 16 +

1

16
log 16

=
1

2
+

3

8
+

3

8
+

3

8
+

4

16
+

4

16
= 2.125.

For X ∼ q

H(X) =
1

2
log 2 +

1

4
log 4 +

1

16
log 16 +

1

16
log 16 +

1

16
log 16 +

1

16
log 16

=
1

2
+

2

4
+

4

16
+

4

16
+

4

16
+

4

16
= 2.

Lets calculate D(p||q),

D(p||q) =
1

2
log 1 +

1

8
log

1

2
+

1

8
log 2 +

1

8
log 2 +

1

16
log 1 +

1

16
log 1

=
1

8
log

1

2
+

1

8
log 2 +

1

8
log 2

= 1/8.

Similarly

D(q||p) =
1

2
log 2 +

1

4
log 2 +

1

16
log

1

2
+

1

16
log

1

2
+

1

16
log 1 +

1

16
log 1

=
1

4
log 2 +

1

16
log

1

2
+

1

16
log

1

2

=
1

4
− 1

16
− 1

16

=
1

8
.

(b) For X ∼ p, the expected length of C1 is

E[ℓ(X)] =
1

2
+

3

8
+

3

8
+

3

8
+

4

16
+

4

16
= 2.125

= H(X)

and for X ∼ q , the expected length of C2 is

E[ℓ(X)] =
1

2
+

2

4
+

4

16
+

4

16
+

4

16
+

4

16
= 2

= H(X)

and thus both C1 and C2 are optimal codes.
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(c) Average length of the codeword when C2 is assigned to X ∼ p is

E[ℓ(X)] =
1

2
+

2

8
+

4

8
+

4

8
+

4

16
+

4

16
= 2.25

= H(X) + .125

= H(X) +D(p||q)!

(d) Similarly the average length of the codeword when C1 is assigned to X ∼ q is

E[ℓ(X)] =
1

2
+

3

4
+

3

16
+

3

16
+

4

16
+

4

16
= 2.125

= H(X) + .125

= H(X) +D(q||p)!

5. The AEP and source coding. A discrete memoryless source emits a sequence of
statistically independent binary digits with probabilities p(1) = 0.005 and p(0) = 0.995.
The digits are taken 100 at a time and a binary codeword is provided for every sequence
of 100 digits containing three or fewer ones.

(a) Assuming that all codewords are the same length, find the minimum length re-
quired to provide codewords for all sequences with three or fewer ones.

(b) Calculate the probability of observing a source sequence for which no codeword
has been assigned.

(c) Use Chebyshev’s inequality to bound the probability of observing a source se-
quence for which no codeword has been assigned. Compare this bound with the
actual probability computed in part (b).

(d) If the codewords for sequences with four or more ones were taken as simply the
sequences themselves, give a bound on the expected compression rate of the code.
Compare this with the entropy rate of the source.

Solution: The AEP and source coding.

(a) The number of 100-bit binary sequences with three or fewer ones is(
100

0

)
+

(
100

1

)
+

(
100

2

)
+

(
100

3

)
= 1 + 100 + 4950 + 161700 = 166751 .

The required codeword length is ⌈log2 166751⌉ = 18. (Note that H(0.005) =
0.0454, so 18 is quite a bit larger than the 4.5 bits of entropy.)

(b) The probability that a 100-bit sequence has three or fewer ones is

3∑
i=0

(
100

i

)
(0.005)i(0.995)100−i = 0.60577 + 0.30441 + 0.7572 + 0.01243 = 0.99833

Thus the probability that the sequence that is generated cannot be encoded is
1− 0.99833 = 0.00167.
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(c) In the case of a random variable Sn that is the sum of n i.i.d. random variables
X1, X2, . . . , Xn, Chebyshev’s inequality states that

Pr(|Sn − nµ| ≥ ϵ) ≤ nσ2

ϵ2
,

where µ and σ2 are the mean and variance of Xi. (Therefore nµ and nσ2 are
the mean and variance of Sn.) In this problem, n = 100, µ = 0.005, and σ2 =
(0.005)(0.995). Note that S100 ≥ 4 if and only if |S100 − 100(0.005)| ≥ 3.5, so we
should choose ϵ = 3.5. Then

Pr(S100 ≥ 4) ≤ 100(0.005)(0.995)

(3.5)2
≈ 0.04061 .

This bound is much larger than the actual probability 0.00167.

(d) Let the random variable L be defined as the length of the resulting codeword.
Then the compression rate is

1

n
E(L) =

1

100
(18× 0.99833 + 100× 0.00167) = 0.181369. (1)

Meanwhile, if Y is the random string of length n = 100 at the source, then the
entropy rate is given by

1

n
H(Y ) = H(p) = 0.0454 (2)

where H(p) is the binary entropy.

6. AEP
Let Xi for i ∈ {1, . . . , n} be an i.i.d. sequence from the p.m.f. p(x) with alphabet
X = {1, 2, . . . ,m}. Denote the expectation and entropy of X by µ := E[X] and
H := −

∑
p(x) log p(x) respectively.

For ϵ > 0, recall the definition of the typical set

A(n)
ϵ =

{
xn ∈ X n :

∣∣∣∣− 1

n
log p(xn)−H

∣∣∣∣ ≤ ϵ

}
and define the following set

B(n)
ϵ =

{
xn ∈ X n :

∣∣∣∣∣ 1n
n∑

i=1

xi − µ

∣∣∣∣∣ ≤ ϵ

}
.

In what follows, ϵ > 0 is fixed.

(a) Does P
(
Xn ∈ A

(n)
ϵ

)
→ 1 as n → ∞?
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(b) Does P
(
Xn ∈ A

(n)
ϵ ∩B

(n)
ϵ

)
→ 1 as n → ∞?

(c) Show that for all n,
|A(n)

ϵ ∩B(n)
ϵ | ≤ 2n(H+ϵ).

(d) Show that for n sufficiently large.

|A(n)
ϵ ∩B(n)

ϵ | ≥ (
1

2
)2n(H−ϵ).

Solution: AEP

(a) Yes, by the AEP for discrete random variables the probability Xn is typical goes
to 1.

(b) Yes, by the Law of Large Numbers P (Xn ∈ B
(n)
ϵ ) → 1. So there exists ϵ > 0 and

N1 such that P (Xn ∈ A
(n)
ϵ ) > 1− ϵ

2
for all n > N1, and there exists N2 such that

P (Xn ∈ B
(n)
ϵ ) > 1− ϵ

2
for all n > N2. So for all n > max(N1, N2):

P (Xn ∈ A(n)
ϵ ∩B(n)

ϵ ) = P (Xn ∈ A(n)
ϵ ) + P (Xn ∈ B(n)

ϵ )− P (Xn ∈ A(n)
ϵ ∪B(n)

ϵ )

> 1− ϵ

2
+ 1− ϵ

2
− 1

= 1− ϵ

So for any ϵ > 0 there exists N = max(N1, N2) such that P (Xn ∈ A
(n)
ϵ ∩B

(n)
ϵ ) >

1− ϵ for all n > N , therefore P (Xn ∈ A
(n)
ϵ ∩B

(n)
ϵ ) → 1.

(c) By the law of total probability
∑

xn∈A(n)
ϵ ∩B(n)

ϵ
p(xn) ≤ 1. Also, for xn ∈ A

(n)
ϵ , from

Theorem 3.1.2 in the text, p(xn) ≥ 2−n(H+ϵ). Combining these two equations

gives 1 ≥
∑

xn∈A(n)
ϵ ∩B(n)

ϵ
p(xn) ≥

∑
xn∈A(n)

ϵ ∩B(n)
ϵ

2−n(H+ϵ) = |A(n)
ϵ ∩ B

(n)
ϵ |2−n(H+ϵ).

Multiplying through by 2n(H+ϵ) gives the result |A(n)
ϵ ∩B

(n)
ϵ | ≤ 2n(H+ϵ).

(d) Since from (b) P{Xn ∈ A
(n)
ϵ ∩ B

(n)
ϵ } → 1, there exists N such that P{Xn ∈

A
(n)
ϵ ∩ B

(n)
ϵ } ≥ 1

2
for all n > N . From Theorem 3.1.2 in the text, for xn ∈ A

(n)
ϵ ,

p(xn) ≤ 2−n(H−ϵ). So combining these two gives 1
2

≤
∑

xn∈A(n)
ϵ ∩B(n)

ϵ
p(xn) ≤∑

xn∈A(n)
ϵ ∩B(n)

ϵ
2−n(H−ϵ) = |A(n)

ϵ ∩ B
(n)
ϵ |2−n(H−ϵ). Multiplying through by 2n(H−ϵ)

gives the result |A(n)
ϵ ∩B

(n)
ϵ | ≥ (1

2
)2n(H−ϵ) for n sufficiently large.

7. An AEP-like limit and the AEP (Bonus)

(a) Let X1, X2, . . . be i.i.d. drawn according to probability mass function p(x). Find
the limit in probability as n → ∞ of

p(X1, X2, . . . , Xn)
1
n .
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(b) Let X1, X2, . . . be an i.i.d. sequence of discrete random variables with entropy
H(X). Let

Cn(t) = {xn ∈ X n : p(xn) ≥ 2−nt}

denote the subset of n-length sequences with probabilities ≥ 2−nt.

i. Show that |Cn(t)| ≤ 2nt.

ii. What is limn→∞ P (Xn ∈ Cn(t)) when t < H(X)? And when t > H(X)?

Solution: An AEP-like limit and the AEP.

(a) By the AEP, we know that for every δ > 0,

lim
n→∞

P

(
−H(X)− δ ≤ 1

n
log p(X1, X2, . . . , Xn) ≤ −H(X) + δ

)
= 1

Now, fix ϵ > 0 (sufficiently small) and choose δ = min{log(1 + 2H(X)ϵ),− log(1−
2H(X)ϵ)}. Then, 2−H(X)(2δ − 1) ≤ ϵ and 2−H(X)(2−δ − 1) ≥ −ϵ. Thus,

−H(X)− δ ≤ 1

n
log p(X1, X2, . . . , Xn) ≤ −H(X) + δ

=⇒ 2−H(X)2−δ ≤ (p(X1, X2, . . . , Xn))
1
n ≤ 2−H(X)2δ

=⇒ 2−H(X)(2−δ − 1) ≤ (p(X1, X2, . . . , Xn))
1
n − 2−H(X) ≤ 2−H(X)(2δ − 1)

=⇒ − ϵ ≤ (p(X1, X2, . . . , Xn))
1
n − 2−H(X) ≤ ϵ

This along with AEP implies that P (|p(X1, X2, . . . , Xn))
1
n − 2−H(X)| ≤ ϵ) → 1

for all ϵ > 0 and hence (p(X1, X2, . . . , Xn))
1
n converges to 2−H(X) in probability.

This proof can be shortened by directly invoking the continuous mapping theo-
rem, which says that if Zn converges to Z in probability and f is a continuous
function, then f(Zn) converges to f(Z) in probability.

Alternate proof (using Strong LLN):
X1, X2, . . . , i.i.d. ∼ p(x). Hence log(Xi) are also i.i.d. and

lim(p(X1, X2, . . . , Xn))
1
n = lim 2log(p(X1,X2,...,Xn))

1
n

= 2lim
1
n

∑
log p(Xi)

= 2E(log(p(X)))

= 2−H(X)

where the second equality uses the continuity of the function 2x and the third
equality uses the strong law of large numbers. Thus, (p(X1, X2, . . . , Xn))

1
n con-

verges to 2−H(X) alomost surely, and hence in probability.
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(b) i.

1 ≥
∑

xn∈Cn(t)

p(xn)

≥
∑

xn∈Cn(t)

2−nt

= |Cn(t)|2−nt

Thus, |Cn(t)| ≤ 2nt.

ii. AEP immediately implies that limn→∞ P (Xn ∈ Cn(t)) = 0 for t < H(X) and
limn→∞ P (Xn ∈ Cn(t)) = 1 for t > H(X).
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