EE276: Homework #2 Solutions

1. Data Processing Inequality.

The random variables X, Y and Z form a Markov triplet (X - Y - Z) if p(z|y) = p(z|y, x), and as a corollary p(x|y) = p(x|y, z). If X, Y, Z form a Markov triplet (X - Y - Z), show that:

- (a) H(X|Y) = H(X|Y,Z) and H(Z|Y) = H(Z|X,Y)
- (b) $H(X|Y) \le H(X|Z)$
- (c) $I(X;Y) \ge I(X;Z)$ and $I(Y;Z) \ge I(X;Z)$
- (d) I(X; Z|Y) = 0

The following definition may be useful:

Definition: The *conditional mutual information* of random variables X and Y given Z is defined by

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$
$$= \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y|z)}{p(x|z)p(y|z)}$$

Solution: Data Processing Inequality.

(a)

$$\begin{split} H(X|Y) &= \sum_{x,y} -p(x,y)\log(p(x|y)) \\ &= \sum_{x,y,z} -p(x,y,z)\log(p(x|y)) \\ &= \sum_{x,y,z} -p(x,y,z)\log(p(x|y,z)) \\ &= H(X|Y,Z) \end{split}$$

where the third equality uses the fact that X and Z are conditionally independent given Y. A similar argument can be used to show H(Z|Y) = H(Z|X,Y).

- (b) $H(X|Y) = H(X|Y,Z) \le H(X|Z).$
- (c) $I(X;Y) = H(X) H(X|Y) \ge H(X) H(X|Z) = I(X;Z).$
- (d) We showed that H(X|Y) = H(X|Z,Y), therefore, I(X;Z|Y) = H(X|Y) H(X|Z,Y) = 0.

2. Two looks.

Let X, Y_1 , and Y_2 be binary random variables. Assume that $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$.

- (a) Does it follow that $I(X; Y_1, Y_2) = 0$? Prove or provide a counterexample.
- (b) Does it follow that $I(Y_1; Y_2) = 0$? Prove or provide a counterexample.

Solution: Two looks

(a) The answer is "no". Although at first the conjecture seems reasonable enoughafter all, if Y_1 gives you no information about X, and if Y_2 gives you no information about X, then why should the two of them together give any information? But remember, it is NOT the case that $I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2)$. The chain rule for information says instead that $I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2|Y_1)$. The chain rule gives us reason to be skeptical about the conjecture.

This problem is reminiscent of the well-known fact in probability that pair-wise independence of three random variables is not sufficient to guarantee that all three are mutually independent. $I(X; Y_1) = 0$ is equivalent to saying that X and Y_1 are independent. Similarly for X and Y_2 . But just because X is pairwise independent with each of Y_1 and Y_2 , it does not follow that X is independent of the vector (Y_1, Y_2) .

Here is a simple counterexample. Let Y_1 and Y_2 be independent fair coin flips. And let $X = Y_1$ XOR Y_2 . X is pairwise independent of both Y_1 and Y_2 , but obviously not independent of the vector (Y_1, Y_2) , since X is uniquely determined once you know (Y_1, Y_2) .

(b) Again the answer is "no". Y_1 and Y_2 can be arbitrarily dependent with each other and both still be independent of X. For example, let $Y_1 = Y_2$ be two observations of the same fair coin flip, and X an independent fair coin flip. Then $I(X;Y_1) = I(X;Y_2) = 0$ because X is independent of both Y_1 and Y_2 . However, $I(Y_1;Y_2) = H(Y_1) - H(Y_1|Y_2) = H(Y_1) = 1$.

3. Prefix and Uniquely Decodable codes

Consider the following code:

u	Codeword			
a	1 0			
b	0 0			
с	11			
d	1 1 0			

- (a) Is this a Prefix code?
- (b) Argue that this code is uniquely decodable, by providing an algorithm for the decoding.

Solution: Prefix and Uniquely Decodable

- (a) No. The codeword of c is a prefix of the codeword of d.
- (b) We decode the encoded symbols from left to right. At any stage,
 - If the next two bits are 10, output a and move to the third bit.
 - If the next two bits are 00, output b and move to the third bit.
 - If the next two bits are 11, look at the third bit:
 - If it is 1, output c and move to the third bit
 - If it is 0, count the number of 0's after the 11:
 - * If even (say 2m zeros), decode to $cb \dots b$ with m b's and move to the bit after the 0's.
 - * If odd (say 2m + 1 zeros), decode to $db \dots b$ with m b's and move to the bit after the 0's.

Some examples with their decoding:

- 11011. It is not possible to split this string as 11 0 11 because there is no codeword "0". Therefore the only way is: 110 11.
- 1110. It is not possible to split this string as 1 11 0 or 1 110 because there is no codeword "0" or "1". Therefore the only way is: 11 10.
- 110010. It is not possible to split this string as 110 0 10 because there is no codeword "0". Therefore the only way is: 11 00 10.

For a more elaborate discussion on this topic read Problem 5.27^1 . In this problem, the *Sardinas-Patterson* test of unique decodability is explained.

4. Relative entropy and the cost of miscoding. Let the random variable X defined on $\{1, 2, 3, 4, 5, 6\}$ according to pmf p. Let p and another pmf q be

Symbol	p(x)	q(x)	$C_1(x)$	$C_2(x)$
1	1/2	1/2	0	0
2	1/8	1/4	100	10
3	1/8	1/16	101	1100
4	1/8	1/16	110	1101
5	1/16	1/16	1110	1110
6	1/16	1/16	1111	1111

- (a) Calculate H(X), D(p||q) and D(q||p).
- (b) The last two columns above represent codes for the random variable. Verify that codes C_1 and C_2 are optimal under the respective distributions p and q.
- (c) Now assume that we use C_2 to code X (as we assumed with pmf p). What is the average length of the codewords? By how much does it exceed the entropy H(X), i.e., what is the redundancy of the code?
- (d) What is the redundancy if we use code C_1 for a random variable Y with pmf q?

Solution:

¹from: T.M. Cover and J.A. Thomas, "Elements of Information Theory", Second Edition, 2006.

(a) For $X \sim p$

$$H(X) = \frac{1}{2}\log 2 + \frac{1}{8}\log 8 + \frac{1}{8}\log 8 + \frac{1}{8}\log 8 + \frac{1}{16}\log 16 + \frac{1}{16}\log 16 + \frac{1}{16}\log 16$$

= $\frac{1}{2} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{4}{16} + \frac{4}{16}$
= 2.125.

For $X \sim q$

$$H(X) = \frac{1}{2}\log 2 + \frac{1}{4}\log 4 + \frac{1}{16}\log 16 + \frac$$

Lets calculate D(p||q),

$$D(p||q) = \frac{1}{2}\log 1 + \frac{1}{8}\log \frac{1}{2} + \frac{1}{8}\log 2 + \frac{1}{8}\log 2 + \frac{1}{16}\log 1 + \frac{1}{16}\log 1$$

= $\frac{1}{8}\log \frac{1}{2} + \frac{1}{8}\log 2 + \frac{1}{8}\log 2$
= $1/8.$

Similarly

$$D(q||p) = \frac{1}{2}\log 2 + \frac{1}{4}\log 2 + \frac{1}{16}\log \frac{1}{2} + \frac{1}{16}\log \frac{1}{2} + \frac{1}{16}\log 1 + \frac{1}{16}\log 1$$

$$= \frac{1}{4}\log 2 + \frac{1}{16}\log \frac{1}{2} + \frac{1}{16}\log \frac{1}{2}$$

$$= \frac{1}{4} - \frac{1}{16} - \frac{1}{16}$$

$$= \frac{1}{8}.$$

(b) For $X \sim p$, the expected length of C_1 is

$$E[\ell(X)] = \frac{1}{2} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{4}{16} + \frac{4}{16}$$

= 2.125
= $H(X)$

and for $X \sim q$, the expected length of C_2 is

$$E[\ell(X)] = \frac{1}{2} + \frac{2}{4} + \frac{4}{16} + \frac$$

and thus both C_1 and C_2 are optimal codes.

(c) Average length of the codeword when C_2 is assigned to $X \sim p$ is

$$E[\ell(X)] = \frac{1}{2} + \frac{2}{8} + \frac{4}{8} + \frac{4}{8} + \frac{4}{16} + \frac{4}{16}$$

= 2.25
= $H(X) + .125$
= $H(X) + D(p||q)!$

(d) Similarly the average length of the codeword when C_1 is assigned to $X \sim q$ is

$$E[\ell(X)] = \frac{1}{2} + \frac{3}{4} + \frac{3}{16} + \frac{3}{16} + \frac{4}{16} + \frac{4}{16}$$

= 2.125
= $H(X) + .125$
= $H(X) + D(q||p)!$

- 5. The AEP and source coding. A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities p(1) = 0.005 and p(0) = 0.995. The digits are taken 100 at a time and a binary codeword is provided for every sequence of 100 digits containing three or fewer ones.
 - (a) Assuming that all codewords are the same length, find the minimum length required to provide codewords for all sequences with three or fewer ones.
 - (b) Calculate the probability of observing a source sequence for which no codeword has been assigned.
 - (c) Use Chebyshev's inequality to bound the probability of observing a source sequence for which no codeword has been assigned. Compare this bound with the actual probability computed in part (b).
 - (d) If the codewords for sequences with four or more ones were taken as simply the sequences themselves, give a bound on the expected compression rate of the code. Compare this with the entropy rate of the source.

Solution: The AEP and source coding.

(a) The number of 100-bit binary sequences with three or fewer ones is

$$\binom{100}{0} + \binom{100}{1} + \binom{100}{2} + \binom{100}{3} = 1 + 100 + 4950 + 161700 = 166751.$$

The required codeword length is $\lceil \log_2 166751 \rceil = 18$. (Note that H(0.005) = 0.0454, so 18 is quite a bit larger than the 4.5 bits of entropy.)

(b) The probability that a 100-bit sequence has three or fewer ones is

$$\sum_{i=0}^{3} \binom{100}{i} (0.005)^{i} (0.995)^{100-i} = 0.60577 + 0.30441 + 0.7572 + 0.01243 = 0.99833$$

Thus the probability that the sequence that is generated cannot be encoded is 1 - 0.99833 = 0.00167.

(c) In the case of a random variable S_n that is the sum of n i.i.d. random variables X_1, X_2, \ldots, X_n , Chebyshev's inequality states that

$$\Pr(|S_n - n\mu| \ge \epsilon) \le \frac{n\sigma^2}{\epsilon^2},$$

where μ and σ^2 are the mean and variance of X_i . (Therefore $n\mu$ and $n\sigma^2$ are the mean and variance of S_n .) In this problem, n = 100, $\mu = 0.005$, and $\sigma^2 = (0.005)(0.995)$. Note that $S_{100} \ge 4$ if and only if $|S_{100} - 100(0.005)| \ge 3.5$, so we should choose $\epsilon = 3.5$. Then

$$\Pr(S_{100} \ge 4) \le \frac{100(0.005)(0.995)}{(3.5)^2} \approx 0.04061$$

This bound is much larger than the actual probability 0.00167.

(d) Let the random variable L be defined as the length of the resulting codeword. Then the compression rate is

$$\frac{1}{n}E(L) = \frac{1}{100} \left(18 \times 0.99833 + 100 \times 0.00167\right) = 0.181369.$$
(1)

Meanwhile, if Y is the random string of length n = 100 at the source, then the entropy rate is given by

$$\frac{1}{n}H(Y) = H(p) = 0.0454 \tag{2}$$

where H(p) is the binary entropy.

6. **AEP**

Let X_i for $i \in \{1, ..., n\}$ be an i.i.d. sequence from the p.m.f. p(x) with alphabet $\mathcal{X} = \{1, 2, ..., m\}$. Denote the expectation and entropy of X by $\mu := \mathbb{E}[X]$ and $H := -\sum p(x) \log p(x)$ respectively.

For $\epsilon > 0$, recall the definition of the typical set

$$A_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} \log p(x^n) - H \right| \le \epsilon \right\}$$

and define the following set

$$B_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| \frac{1}{n} \sum_{i=1}^n x_i - \mu \right| \le \epsilon \right\}.$$

In what follows, $\epsilon > 0$ is fixed.

(a) Does $\mathbb{P}\left(X^n \in A_{\epsilon}^{(n)}\right) \to 1 \text{ as } n \to \infty$?

- (b) Does $\mathbb{P}\left(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}\right) \to 1 \text{ as } n \to \infty$?
- (c) Show that for all n,

$$|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \le 2^{n(H+\epsilon)}.$$

(d) Show that for n sufficiently large.

$$|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \ge (\frac{1}{2})2^{n(H-\epsilon)}.$$

Solution: AEP

- (a) Yes, by the AEP for discrete random variables the probability X^n is typical goes to 1.
- (b) Yes, by the Law of Large Numbers $P(X^n \in B_{\epsilon}^{(n)}) \to 1$. So there exists $\epsilon > 0$ and N_1 such that $P(X^n \in A_{\epsilon}^{(n)}) > 1 \frac{\epsilon}{2}$ for all $n > N_1$, and there exists N_2 such that $P(X^n \in B_{\epsilon}^{(n)}) > 1 \frac{\epsilon}{2}$ for all $n > N_2$. So for all $n > \max(N_1, N_2)$:

$$P(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}) = P(X^n \in A_{\epsilon}^{(n)}) + P(X^n \in B_{\epsilon}^{(n)}) - P(X^n \in A_{\epsilon}^{(n)} \cup B_{\epsilon}^{(n)})$$

> $1 - \frac{\epsilon}{2} + 1 - \frac{\epsilon}{2} - 1$
= $1 - \epsilon$

So for any $\epsilon > 0$ there exists $N = \max(N_1, N_2)$ such that $P(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}) > 1 - \epsilon$ for all n > N, therefore $P(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}) \to 1$.

- (c) By the law of total probability $\sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} p(x^n) \leq 1$. Also, for $x^n \in A_{\epsilon}^{(n)}$, from Theorem 3.1.2 in the text, $p(x^n) \geq 2^{-n(H+\epsilon)}$. Combining these two equations gives $1 \geq \sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} p(x^n) \geq \sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} 2^{-n(H+\epsilon)} = |A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| 2^{-n(H+\epsilon)}$. Multiplying through by $2^{n(H+\epsilon)}$ gives the result $|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \leq 2^{n(H+\epsilon)}$.
- (d) Since from (b) $P\{X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}\} \to 1$, there exists N such that $P\{X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}\} \ge \frac{1}{2}$ for all n > N. From Theorem 3.1.2 in the text, for $x^n \in A_{\epsilon}^{(n)}$, $p(x^n) \le 2^{-n(H-\epsilon)}$. So combining these two gives $\frac{1}{2} \le \sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} p(x^n) \le \sum_{x^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}} 2^{-n(H-\epsilon)} = |A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| 2^{-n(H-\epsilon)}$. Multiplying through by $2^{n(H-\epsilon)}$ gives the result $|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \ge (\frac{1}{2})2^{n(H-\epsilon)}$ for n sufficiently large.

7. An AEP-like limit and the AEP (Bonus)

(a) Let X_1, X_2, \ldots be i.i.d. drawn according to probability mass function p(x). Find the limit in probability as $n \to \infty$ of

$$p(X_1, X_2, \ldots, X_n)^{\frac{1}{n}}.$$

(b) Let X_1, X_2, \ldots be an i.i.d. sequence of discrete random variables with entropy H(X). Let

$$C_n(t) = \{x^n \in \mathcal{X}^n : p(x^n) \ge 2^{-nt}\}$$

denote the subset of *n*-length sequences with probabilities $\geq 2^{-nt}$.

- i. Show that $|C_n(t)| \leq 2^{nt}$.
- ii. What is $\lim_{n\to\infty} P(X^n \in C_n(t))$ when t < H(X)? And when t > H(X)?

Solution: An AEP-like limit and the AEP.

(a) By the AEP, we know that for every $\delta > 0$,

$$\lim_{n \to \infty} P\left(-H(X) - \delta \le \frac{1}{n} \log p(X_1, X_2, \dots, X_n) \le -H(X) + \delta\right) = 1$$

Now, fix $\epsilon > 0$ (sufficiently small) and choose $\delta = \min\{\log(1 + 2^{H(X)}\epsilon), -\log(1 - 2^{H(X)}\epsilon)\}$. Then, $2^{-H(X)}(2^{\delta} - 1) \leq \epsilon$ and $2^{-H(X)}(2^{-\delta} - 1) \geq -\epsilon$. Thus,

$$-H(X) - \delta \leq \frac{1}{n} \log p(X_1, X_2, \dots, X_n) \leq -H(X) + \delta$$

$$\implies 2^{-H(X)} 2^{-\delta} \leq (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} \leq 2^{-H(X)} 2^{\delta}$$

$$\implies 2^{-H(X)} (2^{-\delta} - 1) \leq (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} - 2^{-H(X)} \leq 2^{-H(X)} (2^{\delta} - 1)$$

$$\implies -\epsilon \leq (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} - 2^{-H(X)} \leq \epsilon$$

This along with AEP implies that $P(|p(X_1, X_2, ..., X_n))^{\frac{1}{n}} - 2^{-H(X)}| \leq \epsilon) \to 1$ for all $\epsilon > 0$ and hence $(p(X_1, X_2, ..., X_n))^{\frac{1}{n}}$ converges to $2^{-H(X)}$ in probability. This proof can be shortened by directly invoking the continuous mapping theorem, which says that if Z_n converges to Z in probability and f is a continuous function, then $f(Z_n)$ converges to f(Z) in probability.

Alternate proof (using Strong LLN):

 X_1, X_2, \ldots , i.i.d. $\sim p(x)$. Hence $\log(X_i)$ are also i.i.d. and

$$\lim (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} = \lim 2^{\log(p(X_1, X_2, \dots, X_n))^{\frac{1}{n}}}$$
$$= 2^{\lim \frac{1}{n} \sum \log p(X_i)}$$
$$= 2^{E(\log(p(X)))}$$
$$= 2^{-H(X)}$$

where the second equality uses the continuity of the function 2^x and the third equality uses the strong law of large numbers. Thus, $(p(X_1, X_2, \ldots, X_n))^{\frac{1}{n}}$ converges to $2^{-H(X)}$ alomost surely, and hence in probability.

(b) i.

$$1 \ge \sum_{x^n \in C_n(t)} p(x^n)$$
$$\ge \sum_{x^n \in C_n(t)} 2^{-nt}$$
$$= |C_n(t)| 2^{-nt}$$

Thus, $|C_n(t)| \le 2^{nt}$.

ii. AEP immediately implies that $\lim_{n\to\infty} P(X^n \in C_n(t)) = 0$ for t < H(X) and $\lim_{n\to\infty} P(X^n \in C_n(t)) = 1$ for t > H(X).