
EE276: Homework #3
Due on Friday Feb 2, 5pm

1. Bad codes.
Which of these codes cannot be a Huffman code for any probability assignment? Justify
your answers.

(a) {0, 10, 11}.
(b) {00, 01, 10, 110}.
(c) {01, 10}.

2. Coin Toss Experiment and Golomb Codes

Kedar, Mikel and Naroa have been instructed to record the outcomes of a coin toss ex-
periment. Consider the coin toss experiment X1, X2, X3, ... where Xi are i.i.d. Bern(p)
(probability of a H (head) is p), p = 15/16.

(a) Kedar decides to use Huffman coding to represent the outcome of each coin toss
separately. What is the resulting scheme? What compression rate does it achieve?

(b) Mikel suggests he can do a better job by applying Huffman coding on blocks of r
tosses. Construct the Huffman code for r = 2.

(c) Will Mikel’s scheme approach the optimum expected number of bits per descrip-
tion of source symbol (coin toss outcome) with increasing r? How does the space
required to represent the codebook increase as we increase r?

(d) Naroa suggests that, as the occurrence of T is so rare, we should just record the
number of tosses it takes for each T to occur.
To be precise, if Yk represents the number of trials until the kth T occurred
(inclusive), then Naroa records the sequence:

Zk = Yk − Yk−1, k ≥ 1, (1)

where Y0 = 0

i. What is the distribution of Zk, i.e., P (Zk = j), j = 1, 2, 3, ...?

ii. Compute the entropy and expectation of Zk.

iii. How does the ratio between the entropy and the expectation of Zk compare
to the entropy of Xk? Give an intuitive interpretation.

Page 1 of 5 EE 276, Winter Quarter 2024

(e) Consider the following scheme for encoding Zk, which is a specific case of Golomb
Coding. We are showing the first 10 codewords.

Z Quotient Remainder Code
1 0 1 1 01
2 0 2 1 10
3 0 3 1 11
4 1 0 0 1 00
5 1 1 0 1 01
6 1 2 0 1 10
7 1 3 0 1 11
8 2 0 00 1 00
9 2 1 00 1 01
10 2 2 00 1 10

i. Can you guess the general coding scheme? Compute the expected codelength
of this code.

ii. What is the decoding rule for this Golomb code?

iii. How can you efficiently encode and decode with this codebook?

3. Arithmetic Coding.

R

G

B

0

0.1

0.3

1

!" = [0,1)

R

G

B

0.1

0.12

0.16

0.3

!) = [0.1,0.3)

R

G

B

0.1

0.102

0.106

0.12

!, = [0.1,0.12)

R

G

B

0.106

0.1074

0.1102

0.12

!. = [0.106,0.12)

Figure 1: Illustration of arithmetic coding.

Note: Throughout this problem, we will work with digits rather than bits for simplicity.
So the logarithms will be base 10 and the compressor will output digits {0, 1, . . . , 9}.
This problem introduces a simplified version of arithmetic coding, which is itself based
on Shannon-Fano-Elias coding. Arithmetic coding takes as input a sequence xn ∈ X n

and a distribution q over X . The encoder maintains an interval which is transformed
at each step as follows:

• Start with I0 = [0, 1).

Page 2 of 5 EE 276, Winter Quarter 2024

• For i = 1, . . . , n:

– Divide Ii−1 into |X | half-open subintervals {I(x)i−1, x ∈ X} with length of I
(x)
i−1

proportional to q(x), i.e.,
∣∣∣I(x)i−1

∣∣∣ = q(x) |Ii−1| for x ∈ X .

– Set Ii = I
(xi)
i−1

Figure 1 shows an example of this for X = {R,G,B}, (q(R), q(G), q(B)) = (0.1, 0.2, 0.7)
and x3 = GRB. At the end of this process, the encoder selects a number in the in-
terval In and outputs the digits after the decimal point for that number. In the
example shown, the encoder can output 11, which corresponds to 0.11 ∈ [0.106, 0.12).
While 1103 (corresponding to 0.1103) is also a valid output, the encoder tries to out-
put the shortest possible valid sequence. The YouTube video https://youtu.be/

FdMoL3PzmSA might be helpful for understanding this process even better.

(a) Briefly explain how the decoding might work in a sequential manner. You can
assume that the decoder knows the alphabet, the distribution q and the length of
the source sequence n.

(b) What is the length of interval In in terms of q and xn?

(c) For the following intervals In obtained by following the above-described process
for some xn, find the length of the shortest output sequence (in digits):

i. [0.095, 0.105)

ii. [0.11, 0.12)

iii. [0.1011, 0.102)

In general, if the interval length is ln, then the shortest output sequence has at

most
⌈
log 1

ln

⌉
digits.

(d) Show that the length l(xn) for the arithmetic encoding output satisfies

l(xn) ≤ log
1

q(x1) . . . q(xn)
+ 1

(e) Suppose that Xn is i.i.d. with each Xi following distribution P , and we use arith-
metic coding with q = P . Then show that

1

n
E[l(Xn)] ≤ H(X) +

1

n

Compare this to Huffman coding over blocks of length n with respect to compres-
sion rate and computational complexity.

(f) Suppose both the encoder and the decoder have a prediction algorithm (say a
neural network) that provides probabilities qi(x|xi−1) for all i’s and all x ∈ X .
How would you modify the scheme such that you achieve

l(xn) ≤ log
1

q1(x1)q2(x2|x1) . . . qn(xn|xn−1)
+ 1

Page 3 of 5 EE 276, Winter Quarter 2024

Thus, if you have a prediction model for your data, you can apply arithmetic
coding on it - good prediction translating to high probability, in turn translating
to short compressed representations.

4. Entropy Rate.
Consider the Markov process from class taking values in {H,T} with the joint proba-
bility distribution given as

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1)
n∏

i=2

P (Xi = xi|Xi−1 = xi−1)

where P (X1 = H) = 1
2
, P (Xi = H|Xi−1 = H) = 3

4
and P (Xi = T |Xi−1 = T) = 3

4
for

all i > 1.

(a) Directly compute P (X2 = H) and extend that result to show that the process is
stationary (we are only looking for the main idea, no need to write a long proof).

(b) Compute H(Xn|Xn−1, . . . , X1) as a function of n and find the limit as n → ∞.

(c) Compute 1
n
H(X1, . . . , Xn) as a function of n and find the limit as n → ∞. How

does this relate to the result in part (b)?

5. Individual Sequences and a Universal Compressor.
Note: Ignore integer constraints on codeword lengths throughout this problem.
Notation: h2(p) = −p log2 p− (1− p) log2(1− p) (= binary entropy function).

Let xn be a given arbitrary binary sequence, with n0 0’s and n1 1’s (n1 = n−n0). You
are also provided a compressor Cq which takes in any arbitrary distribution q on {0, 1}
as a parameter, and encodes xn using:

L̄q(x
n) =

1

n
log

1

q(xn)

bits per symbol where q(xn) :=
∏n

i=1 q(xi).

(a) Given the sequence xn, what binary distribution q(x) will you choose as a param-
eter to the compressor Cq, so that L̄q(x

n) is minimized. Your answer (values of
q(0) and q(1)) will be expressible in terms of n, n0 and n1.

(b) When compressing any given individual sequence xn, we also need to store the
parameter distribution q(x) (required for decoding). Show that you can represent
the optimal parameter distribution q(x) from part (a) using log(n+ 1) bits. You
can assume that the decoder knows the length of the source sequence n.

(c) Show that the effective compression rate for compressing xn (in bits per source
symbol) with the distribution q from part (a) is h2(n1/n) + log(n+ 1)/n.

(d) Now suppose that we apply the scheme above to Xn sampled from an i.i.d.
Ber(p) distribution. Show that the expected compression rate approaches h2(p)
as n → ∞, i.e., the scheme is a universal compressor for i.i.d. sources.

Page 4 of 5 EE 276, Winter Quarter 2024

6. Prefix-free Codes for Integers.
We saw in class that LZ77 compression requires storing of integers representing the
match position and length. In this problem we consider binary prefix codes over the
set of natural numbers N = {1, 2, 3, . . . }, where a codeword dj is associated with the
natural number j. Notation: 0j denotes a sequence of j zeros.

(a) Consider the unary code uj = 0j1 with length luj
= j+1. Is this code prefix-free?

(b) Consider now the code bj, which is the binary representation of j (e.g., b1 = 1,
b5 = 101). Note that the codelength of bj is given by: lbj = ⌊log2 j⌋ + 1. Give
examples to show that this code is not prefix-free.

(c) We combine the ideas in parts (a) and (b) to design a shorter prefix-free code
than that in part (a). We first encode the length of bj in unary, followed by bj
itself, i.e., cj = 0⌊log2 j⌋+11bj with length lcj = 2 ⌊log2 j⌋ + 3. Show that this code
is prefix-free.

(d) [Bonus] Can you further improve the idea in part (c) to get a prefix-free code
with length below log2 j+2 log2 log2 j+C where C is some constant (ignore j = 1
for simplicity)?

Page 5 of 5 EE 276, Winter Quarter 2024

