
EE276: Homework #3 Solutions
Due on Friday Feb 2, 5pm

1. Bad codes.
Which of these codes cannot be a Huffman code for any probability assignment? Justify
your answers.

(a) {0, 10, 11}.
(b) {00, 01, 10, 110}.
(c) {01, 10}.

Solution:

(a) {0, 10, 11} is a Huffman code for the distribution (1
2
, 1
4
, 1
4
).

(b) The code {00, 01, 10, 110} can be shortened to {00, 01, 10, 11} without losing
its prefix-free property, and therefore is not optimal, so it cannot be a Huffman
code. Alternatively, it is not a Huffman code because there is a unique longest
codeword.

(c) The code {01, 10} can be shortened to {0, 1} without losing its prefix-free prop-
erty, and therefore is not optimal and not a Huffman code.

2. Coin Toss Experiment and Golomb Codes

Kedar, Mikel and Naroa have been instructed to record the outcomes of a coin toss ex-
periment. Consider the coin toss experiment X1, X2, X3, ... where Xi are i.i.d. Bern(p)
(probability of a H (head) is p), p = 15/16.

(a) Kedar decides to use Huffman coding to represent the outcome of each coin toss
separately. What is the resulting scheme? What compression rate does it achieve?

(b) Mikel suggests he can do a better job by applying Huffman coding on blocks of r
tosses. Construct the Huffman code for r = 2.

(c) Will Mikel’s scheme approach the optimum expected number of bits per descrip-
tion of source symbol (coin toss outcome) with increasing r? How does the space
required to represent the codebook increase as we increase r?

(d) Naroa suggests that, as the occurrence of T is so rare, we should just record the
number of tosses it takes for each T to occur.
To be precise, if Yk represents the number of trials until the kth T occurred
(inclusive), then Naroa records the sequence:

Zk = Yk − Yk−1, k ≥ 1, (1)

where Y0 = 0

Page 1 of 10 EE 276, Winter Quarter 2024

i. What is the distribution of Zk, i.e., P (Zk = j), j = 1, 2, 3, ...?

ii. Compute the entropy and expectation of Zk.

iii. How does the ratio between the entropy and the expectation of Zk compare
to the entropy of Xk? Give an intuitive interpretation.

(e) Consider the following scheme for encoding Zk, which is a specific case of Golomb
Coding. We are showing the first 10 codewords.

Z Quotient Remainder Code
1 0 1 1 01
2 0 2 1 10
3 0 3 1 11
4 1 0 0 1 00
5 1 1 0 1 01
6 1 2 0 1 10
7 1 3 0 1 11
8 2 0 00 1 00
9 2 1 00 1 01
10 2 2 00 1 10

i. Can you guess the general coding scheme? Compute the expected codelength
of this code.

ii. What is the decoding rule for this Golomb code?

iii. How can you efficiently encode and decode with this codebook?

Solution:

(a) As we have just 2 source symbols (H & T), the optimal Huffman code is {0, 1}
for {H,T}. The compression rate (expected codelength) achieved is 1.

(b) One possible Huffman code for r = 2 is HH - 0, HT - 10, TH - 110, TT - 111.
This has average codelength of 303

512
bits/source symbol.

(c) We know that, using Shannon codes for extended codewords of length r, the
expected average codelength has bounds:

H(X) ≤ ℓavg ≤ H(X) +
1

r
(2)

As Huffman coding is the optimal prefix code, it will always perform at least
as well as the Shannon codes. Thus, as r increases, we will achieve optimal
average codelength ofH(X) = Hb(1/16). As r increases, the number of codewords
increases as 2r. Also, the average size of the codewords, increases as rH(X).
Thus, effectively, the amount of space required to store the codebook increases
exponentially in r.

(d) First of all, let us convince ourselves that if Yk = n, then {Z1, ..., Zk} represents the
same information as {X1, ..., Xn}. Also, Zk random variables are independent of
each other (since the coin tosses are independent) and have identical distributions.

Page 2 of 10 EE 276, Winter Quarter 2024

i. Zk has geometric distribution. Specifically P (Zk = j) = pj−1(1 − p), j ∈
1, 2, 3, To see this, lets consider Z1 for ease first. For Z1 = j, we should
have the first j − 1 tosses to be H, while the jth toss should be a T . This
results in: P (Z1 = j) = pj−1(1− p). Due to Zk being i.i.d., we can generalize
the results to Zk.

ii. H(Zk) =
Hb(p)
(1−p)

. As Zk has geometric distribution, E[Zk] =
1

(1−p)
.

iii. We observe that, H(X) = H(Zk)
E[Zk]

. Intuitively, we can explain this as follows:
Zk represents the same amount of information as XYk−1+1, ..., XYk−1

. As the
Xi are i.i.d., the information content of Zk is the same as the information
content of E[Zk] i.i.d random variables Xi. Thus, H(Zk) = E[Zk]H(X)

(e) As an aside, the aim of the question was to introduce Golomb Codes. Golomb
codes are infact optimal for sequences with geometric distribution, even though
having a very simple construction. We have presented a specific case of Golomb
codes in our example.

i. We are considering quotient of Z with respect to 4 in the unary form, and
remainder in the binary form and concatenating them using a separator bit
(the bit 1 in this case).
To calculate the expected codelength, observe that the length of codeword
for Z = 4k +m (where 0 ≤ m ≤ 3), is 3 + k. Thus, adding terms in groups
of 4 and subtracting one term corresponding to Z = 0, we get,

l̄ =
∞∑
k=0

(1− p)p4k−1(1 + p+ p2 + p3)(3 + k)− 3
1− p

p

= (1− p)(1 + p+ p2 + p3)
∞∑
k=0

p4k−1(3 + k)− 3
1− p

p

= (1− p)(1 + p+ p2 + p3)
3− 2p4

p(1− p4)2
− 3

1− p

p

=
3− 2p4

p(1− p4)
− 3

1− p

p

For the current source, this evaluates to 6.62 bits, as compared to the entropy
H(Z) = 5.397 bits.

ii. It is easy to show that the code is prefix-free. Thus, the decoding can proceed
by using the standard techniques of constructing a prefix-tree and using the
same for decoding. However, note that in this case, the codebook size itself
is unbounded, thus we might need to truncate the tree to some maximum
depth.
There, is however a better and a simpler way, which does not require us to
store the codebook explicitly. We can parse the symbol stream until we get
the bit 1, this gives us the quotient q. Now, we read the next 2 bits, which
gives us the remainder r. Using q and r, we can decode Z = 4 ∗ q + r.

Page 3 of 10 EE 276, Winter Quarter 2024

iii. The good thing about Golomb codes is that, even though the codebook size
is unbounded, we do not need to explicitly store the codebook, but can have
a simple code which generate the codes, and also to decode the codes.

3. Arithmetic Coding.

R

G

B

0

0.1

0.3

1

!" = [0,1)

R

G

B

0.1

0.12

0.16

0.3

!) = [0.1,0.3)

R

G

B

0.1

0.102

0.106

0.12

!, = [0.1,0.12)

R

G

B

0.106

0.1074

0.1102

0.12

!. = [0.106,0.12)

Figure 1: Illustration of arithmetic coding.

Note: Throughout this problem, we will work with digits rather than bits for simplicity.
So the logarithms will be base 10 and the compressor will output digits {0, 1, . . . , 9}.
This problem introduces a simplified version of arithmetic coding, which is itself based
on Shannon-Fano-Elias coding. Arithmetic coding takes as input a sequence xn ∈ X n

and a distribution q over X . The encoder maintains an interval which is transformed
at each step as follows:

• Start with I0 = [0, 1).

• For i = 1, . . . , n:

– Divide Ii−1 into |X | half-open subintervals {I(x)i−1, x ∈ X} with length of I
(x)
i−1

proportional to q(x), i.e.,
∣∣∣I(x)i−1

∣∣∣ = q(x) |Ii−1| for x ∈ X .

– Set Ii = I
(xi)
i−1

Figure 1 shows an example of this for X = {R,G,B}, (q(R), q(G), q(B)) = (0.1, 0.2, 0.7)
and x3 = GRB. At the end of this process, the encoder selects a number in the in-
terval In and outputs the digits after the decimal point for that number. In the
example shown, the encoder can output 11, which corresponds to 0.11 ∈ [0.106, 0.12).
While 1103 (corresponding to 0.1103) is also a valid output, the encoder tries to out-
put the shortest possible valid sequence. The YouTube video https://youtu.be/

FdMoL3PzmSA might be helpful for understanding this process even better.

(a) Briefly explain how the decoding might work in a sequential manner. You can
assume that the decoder knows the alphabet, the distribution q and the length of
the source sequence n.

Page 4 of 10 EE 276, Winter Quarter 2024

(b) What is the length of interval In in terms of q and xn?

(c) For the following intervals In obtained by following the above-described process
for some xn, find the length of the shortest output sequence (in digits):

i. [0.095, 0.105)

ii. [0.11, 0.12)

iii. [0.1011, 0.102)

In general, if the interval length is ln, then the shortest output sequence has at

most
⌈
log 1

ln

⌉
digits.

(d) Show that the length l(xn) for the arithmetic encoding output satisfies

l(xn) ≤ log
1

q(x1) . . . q(xn)
+ 1

(e) Suppose that Xn is i.i.d. with each Xi following distribution P , and we use arith-
metic coding with q = P . Then show that

1

n
E[l(Xn)] ≤ H(X) +

1

n

Compare this to Huffman coding over blocks of length n with respect to compres-
sion rate and computational complexity.

(f) Suppose both the encoder and the decoder have a prediction algorithm (say a
neural network) that provides probabilities qi(x|xi−1) for all i’s and all x ∈ X .
How would you modify the scheme such that you achieve

l(xn) ≤ log
1

q1(x1)q2(x2|x1) . . . qn(xn|xn−1)
+ 1

Thus, if you have a prediction model for your data, you can apply arithmetic
coding on it - good prediction translating to high probability, in turn translating
to short compressed representations.

Solution:

(a) We first locate the interval I
(x)
0 containing the output number and decode x1 as

the corresponding x. Then we set I1 = I
(x1)
0 and locate the interval I

(x)
1 containing

the output number to decode x2. Repeating this n times, we get back xn.

(b) Length of In is q(x1)× q(x2)× · · · × q(xn).

(c) i. Length 1, output sequence 1 (corresponding to 0.1)

ii. Length 2, output sequence 11 (corresponding to 0.11)

iii. Length 4, output sequence 1011 (corresponding to 0.1011) or 1012, etc.

(d) From part (b), the length of In is q(x1)× q(x2)× · · · × q(xn). Using part (c), we
get

l(xn) ≤
⌈
log

1

q(x1) . . . q(xn)

⌉
The result follows using the fact that ⌈x⌉ ≤ x+ 1.

Page 5 of 10 EE 276, Winter Quarter 2024

(e) Using result from part (d),

l(Xn) ≤ log
1

P (X1) . . . P (Xn)
+ 1

=
n∑

i=1

log
1

P (Xi)

Taking expectation and dividing by n,

1

n
E[l(Xn)] ≤ 1

n

n∑
i=1

E

[
log

1

P (Xi)

]
+

1

n

=
1

n

n∑
i=1

H(P) +
1

n

= H(P) +
1

n

As n becomes large, arithmetic coding approaches entropy, which is the optimal
compression rate. Huffman codes also approach the same limit, but are also
optimal for any given n (although the gap becomes pretty small as n increases)
(note that we can show the same 1/n upper bound for Huffman codes as seen in
HW 2). Arithmetic coding has linear complexity in n, but Huffman codes have
exponential complexity in n (block length) for storing the codebook.

(f) At step i, instead of dividing Ii−1 into subintervals with lengths proportional to
q(x), we divide into subintervals with lengths proportional to qi(x|xi−1). Then
the length of In is q1(x1) × q2(x2|x1) × · · · × qn(xn|xn−1) and the length satisfies
the desired bound (using same proof as part d).

4. Entropy Rate.
Consider the Markov process from class taking values in {H,T} with the joint proba-
bility distribution given as

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1)
n∏

i=2

P (Xi = xi|Xi−1 = xi−1)

where P (X1 = H) = 1
2
, P (Xi = H|Xi−1 = H) = 3

4
and P (Xi = T |Xi−1 = T) = 3

4
for

all i > 1.

(a) Directly compute P (X2 = H) and extend that result to show that the process is
stationary (we are only looking for the main idea, no need to write a long proof).

(b) Compute H(Xn|Xn−1, . . . , X1) as a function of n and find the limit as n → ∞.

(c) Compute 1
n
H(X1, . . . , Xn) as a function of n and find the limit as n → ∞. How

does this relate to the result in part (b)?

Solution:

Page 6 of 10 EE 276, Winter Quarter 2024

(a)

P (X2 = H) = P (X1 = T,X2 = H) + P (X1 = H,X2 = H)

= P (X1 = T)P (X2 = H|X1 = T) + P (X1 = H)P (X2 = H|X1 = H)

=
1

2
× 1

4
+

1

2
× 3

4

=
1

2

Thus, P (X2 = H) = 1
2
. Now by repeating this exercise, it can be shown that

P (Xn = H) = 1
2
for all n. To show that the process is stationary one needs to

show that for any n, k and (x1, . . . , xk) ∈ {H,T}k, the following holds:

P (X1 = x1, . . . , Xk = xk) = P (Xn+1 = x1, . . . , Xn+k = xk)

By the definition of the Markov process, we have

P (X1 = x1, . . . , Xk = xk) = P (X1 = x1)
k∏

i=2

P (Xi = xi|Xi−1 = xi−1)

Similarly by considering P (X1, . . . , Xn+k) and marginalizing over X1, . . . , Xn, we
obtain

P (Xn+1 = x1, . . . , Xn+k = xk) = P (Xn+1 = x1)
n+k∏

i=n+2

P (Xi = xi|Xi−1 = xi−1)

The stationarity follows by observing that two products match termwise.

(b) Note that by the Markov property, Xn is independent of X1, . . . , Xn−2 given Xn−1.
Thus,

H(Xn|Xn−1, . . . , X1) = H(Xn|Xn−1)

By stationarity, this is same as H(X2|X1). The joint distribution of (X1, X2) is

P (X1 = H,X2 = H) =
1

2
× 3

4

P (X1 = T,X2 = H) =
1

2
× 1

4

P (X1 = H,X2 = T) =
1

2
× 1

4

P (X1 = T,X2 = T) =
1

2
× 3

4

and the entropyH(X2|X1) is just h2(
3
4
) by direct computation. ThusH(Xn|Xn−1, . . . , X1) =

h2(3/4). Since this does not depend on n, the limit is also h2(
3
4
).

Page 7 of 10 EE 276, Winter Quarter 2024

(c) Using chain rule for entropy

1

n
H(X1, . . . , Xn) =

1

n
H(X1) +

1

n

n∑
i=2

H(Xi|Xi−1, . . . , X1)

Using the result from part (b), we get

1

n
H(X1, . . . , Xn) =

1

n
+

(n− 1)h2(3/4)

n

The limit is h2(3/4) which matches the limit from part (b). Both parts compute
the entropy rate of this process, and the proof of equality in the general case is
given in the book C&T Theorem 4.2.1.

5. Individual Sequences and a Universal Compressor.
Note: Ignore integer constraints on codeword lengths throughout this problem.
Notation: h2(p) = −p log2 p− (1− p) log2(1− p) (= binary entropy function).

Let xn be a given arbitrary binary sequence, with n0 0’s and n1 1’s (n1 = n−n0). You
are also provided a compressor Cq which takes in any arbitrary distribution q on {0, 1}
as a parameter, and encodes xn using:

L̄q(x
n) =

1

n
log

1

q(xn)

bits per symbol where q(xn) :=
∏n

i=1 q(xi).

(a) Given the sequence xn, what binary distribution q(x) will you choose as a param-
eter to the compressor Cq, so that L̄q(x

n) is minimized. Your answer (values of
q(0) and q(1)) will be expressible in terms of n, n0 and n1.

(b) When compressing any given individual sequence xn, we also need to store the
parameter distribution q(x) (required for decoding). Show that you can represent
the optimal parameter distribution q(x) from part (a) using log(n+ 1) bits. You
can assume that the decoder knows the length of the source sequence n.

(c) Show that the effective compression rate for compressing xn (in bits per source
symbol) with the distribution q from part (a) is h2(n1/n) + log(n+ 1)/n.

(d) Now suppose that we apply the scheme above to Xn sampled from an i.i.d.
Ber(p) distribution. Show that the expected compression rate approaches h2(p)
as n → ∞, i.e., the scheme is a universal compressor for i.i.d. sources.

Solution:

(a) For q(0) = 1− q, q(1) = q, we have

L̄q =
1

n
log

1

(1− q)n0qn1
= −n0

n
log(1− q)− n1

n
log(q).

We see that L̄q is convex in q, and taking derivative w.r.t q gives q∗ = n1

n
.

Page 8 of 10 EE 276, Winter Quarter 2024

(b) By the previous part, it suffices to store n1 ∈ {0, 1, · · · , n} for full knowledge of
q(x). Hence, log(n+ 1) bits are enough (ignoring integer constraints).

(c) Simply substitute q = q∗ in the L̄q expression in part (a) solution above, and add
the contribution from part (b) (normalized by n).

L̄q +
log(n+ 1)

n
= h2

(n1

n

)
+

log(n+ 1)

n
.

(d) Let N1 denote the number of 1’s in Xn. Then we get that the expected compres-
sion rate (call it Rn) is

Rn = E
[
h2

(
N1

n

)]
+

log(n+ 1)

n

For the first term, we can use Jensen’s inequality and the concavity of entropy to
get

Rn ≤ h2

(
E
[
N1

n

])
+

log(n+ 1)

n

Now, E
[
N1

n

]
= p which gives us

Rn ≤ h2(p) +
log(n+ 1)

n

Taking the limit,
lim
n→∞

Rn ≤ h2(p)

But since the entropy h2(p) is also a lower bound on any compression scheme, we
must have

lim
n→∞

Rn = h2(p)

Thus the scheme is universal for i.i.d. sources.

6. Prefix-free Codes for Integers.
We saw in class that LZ77 compression requires storing of integers representing the
match position and length. In this problem we consider binary prefix codes over the
set of natural numbers N = {1, 2, 3, . . . }, where a codeword dj is associated with the
natural number j. Notation: 0j denotes a sequence of j zeros.

(a) Consider the unary code uj = 0j1 with length luj
= j+1. Is this code prefix-free?

(b) Consider now the code bj, which is the binary representation of j (e.g., b1 = 1,
b5 = 101). Note that the codelength of bj is given by: lbj = ⌊log2 j⌋ + 1. Give
examples to show that this code is not prefix-free.

(c) We combine the ideas in parts (a) and (b) to design a shorter prefix-free code
than that in part (a). We first encode the length of bj in unary, followed by bj
itself, i.e., cj = 0⌊log2 j⌋+11bj with length lcj = 2 ⌊log2 j⌋ + 3. Show that this code
is prefix-free.

Page 9 of 10 EE 276, Winter Quarter 2024

(d) [Bonus] Can you further improve the idea in part (c) to get a prefix-free code
with length below log2 j+2 log2 log2 j+C where C is some constant (ignore j = 1
for simplicity)?

Solution:

(a) This is a prefix-free code. Different codes uj have different number of zeros before
1.

(b) This code is not prefix-free. For example, b1 = 1 is a prefix of b3 = 11.

(c) Assume for the sake of contradiction that cj is a prefix of cj′ for j ̸= j′. Comparing
the number of zeros in the front, we must have ⌊log2 j⌋ = ⌊log2 j′⌋. Hence, bj and
bj′ must have the same length, and the prefix assumption implies bj = bj′ . Since
bj is the binary representation of j, we then have j = j′, a contradiction!

(d) You can first represent ⌊log2 j⌋+1 (the length of bj) using the code in part (c) and
then encode j as bj. The codeword would look like c⌊log2 j⌋+1bj or more explicitly

0⌊log(⌊log2 j⌋+1)⌋+11b⌊log2 j⌋+1bj

It is easy to see how one can decode this instantaneously, implying that this is
prefix-free. The length is

⌊log2 j⌋+ 2 ⌊log(⌊log2 j⌋+ 1)⌋+ 4

which satisfies the condition in the problem for some C large enough.

Page 10 of 10 EE 276, Winter Quarter 2024

