
EE276 Homework #5
Due on Friday Feb 23, 5pm

1. Polar codes encoding and decoding.
In this problem, we try to understand the polar code encoding and decoding procedure
through small examples with block size N = 4. You will work with the circuit shown
in Figure 1. You may want to take a look at the newly posted polar code decoding
slides the course website to learn about successive cancellation decoding.

Figure 1: Polar code encoding circuit with N = 4 for problem 2. W is a BEC, and Xi’s, Yi’s
and Ui’s are binary.

For parts (a) to (c), assume that U1 and U2 are both frozen to 0, while U3 and U4 are
the message bits.

(a) What is the rate of the code?

(b) Perform encoding for input message (U3, U4) = (1, 1) and find the codeword
(X1, X2, X3, X4).

(c) Perform successive cancellation decoding for received vector (Y1, Y2, Y3, Y4) =
(1, ?, ?, 1). Does the decoding succeed, and if yes, what is the decoded message
(U3, U4)?

Now we try to understand how the choice of the frozen bits impacts the decoding. We
also look at the suboptimality of successive cancellation decoding. For parts (d) and
(e), assume that U2 and U3 are both frozen to 0, while U1 and U4 are the message bits.

(d) Perform successive cancellation decoding for received vector (Y1, Y2, Y3, Y4) =
(1, ?, ?, 0) and verify that the decoding fails when decoding U1.

(e) Perform optimal maximum likelihood decoding for the same received as part (d),
i.e., (Y1, Y2, Y3, Y4) = (1, ?, ?, 0). In this case, you can perform maximum likelihood
decoding by
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• First computing the codeword (X1, X2, X3, X4) for all 4 possible input mes-
sages (U1, U4).

• Then finding the input message(s) (U1, U4) for which you could receive (Y1, Y2, Y3, Y4) =
(1, ?, ?, 0). If more than one such message exists, declare failure.

Does the decoding succeed, and if yes, what is the decoded message (U1, U4)?

Solution:

(a) The rate is 1/2 since we transmit 2 message bits (U3, U4) over 4 channel trans-
missions (X1, X2, X3, X4).

(b) (X1, X2, X3, X4) = (0, 1, 0, 1)

(c) Decoding succeeds and we get (U3, U4) = (0, 1).

(d) See Figure 2: decoding fails since both outputs of the top left 2x2 block are
erasures. Note that when doing successive cancellation decoding, we assume U2

and U3 are random while decoding U1 even though U2, U3 are in fact frozen to 0.

Figure 2: SC decoding for part (d).

(e)
(U1, U4) = (0, 0) : (X1, X2, X3, X4) = (0, 0, 0, 0)

(U1, U4) = (0, 1) : (X1, X2, X3, X4) = (1, 1, 1, 1)

(U1, U4) = (1, 0) : (X1, X2, X3, X4) = (1, 0, 0, 0)

(U1, U4) = (1, 1) : (X1, X2, X3, X4) = (0, 1, 1, 1)

As you can see, the only input that could produce (Y1, Y2, Y3, Y4) = (1, ?, ?, 0) is
(U1, U4) = (1, 0) (so maximum likelihood decoding succeeds in this case).

2. Proving polarization for the BEC. In polar coding, we preprocess the input so that
the n identical uses of a symmetric memoryless channel become n synthetic channel
uses with very different capacities. We state a polarization theorem, which says that
as n → ∞, the fraction of almost noiseless channels approaches C and the fraction
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of almost useless channels approaches 1 − C, where C is the capacity of the original
channel. In this question, we consider the binary erasure channel (BEC) with erasure
probability p and prove the polarization theorem rigorously. For the BEC W with
erasure probability p, define M(W) =

√
p(1− p) as its mediocrity.

(a) When is the mediocrity of a channel 0?

(b) Consider the polarized channels W+ and W− we have seen in the class for m = 1.
Are they also BECs? If so, what are M(W+) and M(W−)?

(c) Recall the tree of channel capacities obtained by recursively applying the polariza-
tion formula to the BECs. Suppose an ant walks on the tree of channel capacities
starting at W and choosing W+ and W− with equal probability 1/2. Upon reach-
ing each channel W̃ (e.g., W̃ = W+), it chooses W̃+ (W++) and W̃− (W+−) with
equal probability 1/2. Let Fm denote the distribution of the erasure probabilities
for n = 2m and let F0 = p (with probability 1). What are the distributions F1

and F2?

(d) Let Mm denote the average mediocrity of the channels for the distribution Fm.

For instance M0 =
√

p(1− p). What is M1? Prove that M1 ≤
√

3
4
M0.

(e) Let ρ =
√

3
4
. Prove that Mm ≤ ρm.

(f) Let mediocre(m, ϵ) denote the fraction of the n = 2m channnels with mediocrity
strictly larger than

√
ϵ(1− ϵ). Show that mediocre(m, ϵ) → 0 as m → ∞.

(g) Let g(m, ϵ) and b(m, ϵ) denote the fraction of the channels with erasure probability
strictly smaller than ϵ (i.e., good channels) and strictly larger than 1− ϵ (i.e., bad
channels) respectively. Show that

p ≥ b(m, ϵ)(1− ϵ).

(Hint: recall that the expected erasure probability under Fm is the same for all
m and equal to p.)

(h) Define g(ϵ) := limm→∞ g(m, ϵ). Argue that g(m, ϵ) ≥ g(m, δ) for any ϵ ≥ δ.
Conclude that g(ϵ) ≥ g(δ) for any ϵ ≥ δ.

(i) Prove that g(ϵ) ≥ 1− p. Thus, for any given ϵ ∈ (0, 1), the fraction g(ϵ) of good
channels becomes at least C = 1− p as m → ∞.

Solution:

(a) Mediocrity of the channel 0 is
√

p(1− p).

(b) The channelsW+ andW− are also BEC, with erasure probabilities p2 and 1−(1−
p)(1 − p) = 2p − p2. Thus, M(W+) =

√
p2(1− p2) = p

√
1− p2 and M(W−) =√

(2p− p2)(1− 2p+ p2) = (1− p)
√

2p− p2.

(c) Using the recursive formula C+ = 2C − C2 and C− = C2, we can write

F1 =

{
2p− p2 with probability 1

2

p2 with probability 1
2
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and

F2 =


(2p− p2)(2− 2p+ p2) with probability 1

4

(2p− p2)2 with probability 1
4

2p2 − p4 with probability 1
4

p4 with probability 1
4

(d) M1 =
1
2
M(W+) + 1

2
M(W−) = 1

2
(p
√

1− p2 + (1 − p)
√
2p− p2), where we have

calculated M(W+) and M(W−) in part (a). To prove M1 ≤
√

3
4
M0, we use

Jensen’s inequality. Since
√
. is concave, it holds that

1

2
(p
√

1− p2 + (1− p)
√

2p− p2)

≤
√

p2(1− p2) + (1− p)2(2p− p2)

2

=

√
3

4
p(1− p)

√
2(p(1 + p) + (1− p)(2− p))

3

=

√
3

4
p(1− p)

√
2(2p2 − 2p+ 1)

3

≤
√

3

4
p(1− p),

since 2p2 − 2p+ 1 ≤ 1 for p ∈ (0, 1).

(e) We observe that Mm+1 ≤ ρMm for all m by applying the observation in part (c)
to all new branches. Thus, Mm ≤ ρmM0 ≤ ρm since M0 ≤ 1 for all p ∈ (0, 1).

(f) Note that by definition, mediocre(m, ϵ)
√
ϵ(1− ϵ) ≤ Mm; as Mm also includes the

contributions of the channels with mediocrity in (0,
√

ϵ(1− ϵ)) and the mediocrity

of the channels counted for mediocre(m, ϵ) can be larger than
√

ϵ(1− ϵ). Since
Mm ≤ ρm by part (e), Mm ≥ 0 and ρ ∈ (0, 1), as m → ∞, mediocre(m, ϵ) ≤
Mm → 0. This implies mediocre(m, ϵ) → 0 as m → ∞.

(g) As the average erasure probability of Fm is p for allm, it holds that p ≥ b(m, ϵ)(1−
ϵ), as Mm also includes the contributions of the good and mediocre channels, i.e.,
g(m, ϵ) and mediocre(m, ϵ), and the erasure probability of the channels counted
for b(m, ϵ) can be larger than 1− ϵ. Hence, p ≥ b(m, ϵ)(1− ϵ).

(h) Since g(m, ϵ) is defined as the fraction of the channels with erasure probability
< ϵ, and any channel with erasure probability < δ is also a channel with erasure
probability < ϵ, g(m, ϵ) ≥ g(m, δ) for any ϵ ≥ δ and all m. Hence g(ϵ) =
limm→∞ g(m, ϵ) ≥ limm→∞g(m, δ)g(δ) for any ϵ ≥ δ.

(i) By part (g), g(m, ϵ) = 1−mediocre(m, ϵ)− b(m, ϵ) ≥ 1−mediocre(m, ϵ)− p
1−ϵ

=
1−ϵ−p
1−ϵ

+mediocre(m, ϵ). Takingm → ∞, we observe that g(ϵ) = limm→∞ g(m, ϵ) ≥
1−ϵ−p
1−ϵ

− limm→∞mediocre(m, ϵ) = 1−ϵ−p
1−ϵ

as limm→∞mediocre(m, ϵ) = 0 by part
(f). Finally, since g(ϵ) ≥ g(δ) for any ϵ ≥ δ by part (h), we can conclude that
g(ϵ) ≥ limδ→0 g(δ) = limδ→0

1−δ−p
1−δ

= 1− p.
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