
EE276 Homework #6
Due on March 1, 5pm

1. Rate distortion for uniform source with Hamming distortion.
Consider a source X uniformly distributed on the set {1, 2, ...,m}. Find the rate
distortion function for this source with Hamming distortion, i.e.,

d(x, x̂) =

{
0, x = x̂

1, x ̸= x̂

via the following steps:

(a) Argue that R(D) = 0 when D ≥ 1− 1
m
.

(b) Show that for D ≤ 1 − 1
m
, I(X; X̂) ≥ log2m − h2(D) − D log2(m − 1) for any

joint distribution (X, X̂) satisfying the distortion constraint D.
Hint : Fano’s inequality.

(c) Find distribution p(x̂|x) that achieves the above lower bound when 0 ≤ D ≤ 1− 1
m
.

(d) Use the above parts to write down the rate-distortion function R(D) for D ≥ 0.

2. Convexity of rate distortion function.
Assume (X, Y ) ∼ p(x, y) = p(x)p(y|x). In this problem, you will show that for fixed
p(x), I(X;Y ) is a convex function of p(y|x).

(a) The log sum inequality states that for n positive numbers a1, a2, · · · , an, and
b1, b2, · · · , bn, we have

n∑
i=1

ai log
ai
bi

≥

(
n∑

i=1

ai

)
log

(∑n
i=1 ai∑n
i=1 bi

)
with equality if and only if ai

bi
=constant. Using this inequality (you don’t have

to prove this inequality), show that D(p||q) is convex in (p, q), i.e.,

λD(p1||q1) + (1− λ)D(p2||q2) ≥ D(λp1 + (1− λ)p2||λq1 + (1− λ)q2)

(b) Let p1(y|x) and p2(y|x) be two different conditional distributions. For i ∈ {1, 2},
let pi(x, y) = pi(y|x)p(x), i.e., their corresponding joint distributions. For 0 ≤
λ ≤ 1, let pλ(y|x)

∆
= λp1(y|x) + (1− λ)p2(y|x). Show that

pλ(y) = λp1(y) + (1− λ)p2(y)

(c) The mutual information between random variables X and Y can be alternatively
written as

I(X;Y ) = D(p(x, y)||p(x)p(y))
Using this in addition to the results of the previous parts show that for fixed p(x),
I(X;Y ) is convex in p(y|x).
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(d) Using the previous part, show that the rate distortion function R(I)(D) is convex
in the distortion parameter D.

3. Shannon lower bound.
Let X be a continuous random variable with mean zero and variance σ2. R(D) is the
corresponding rate-distortion function for mean-squared distortion.

(a) Show the lower bound:

h(X)− 1

2
log(2πeD) ≤ R(D).

(b) Using the joint distribution shown in Figure 1, show the upper bound on R(D):

R(D) ≤ 1

2
log

σ2

D
(1)

Are Gaussian random variables harder or easier to describe than other random
variables with the same variance?

&%
'$

- -

?

����u? -

σ2−D
σ2

X

Z ∼ N
(
0, Dσ2

σ2−D

)

X̂

X̂ = σ2−D
σ2 (X + Z)

Figure 1: Joint distribution for upper bound on rate distortion function. The circle with the
dot represents multiplication.

4. Rate distortion for two independent sources. Let {Xi} be iid ∼ p(x) with
distortion d(x, x̂) and rate distortion function RX(D). Similarly, let {Yi} be iid ∼ p(y)
with distortion d(y, ŷ) and rate distortion function RY (D).

Suppose we now wish to describe the process {(Xi, Yi)} subject to distortions E[d(X, X̂)] ≤
D1 and E[d(Y, Ŷ )] ≤ D2. Thus a rate RX,Y (D1, D2) is sufficient, where

RX,Y (D1, D2) = min
p(x̂,ŷ|x,y):E[d(X,X̂)]≤D1,E[d(Y,Ŷ )]≤D2

I(X, Y ; X̂, Ŷ )

Suppose the {Xi} process and the {Yi} process are independent of each other.

Express RX,Y (D1, D2) in terms of RX(D1) and RY (D2). Can one simultaneously com-
press two independent sources better than by compressing the sources individually?
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5. Distortion-rate function. Let

D(R) = min
p(x̂|x):I(X;X̂)≤R

E[d(X, X̂)] (2)

be the distortion rate function.

(a) Is D(R) increasing or decreasing in R?

(b) Is D(R) convex or concave in R?

(c) Let X1, X2, . . . , Xn be i.i.d. ∼ p(x). Suppose one is given a code (Xn, X̂n) with

1

n
I(Xn; X̂n) ≤ R

and resulting distortion D = E[d(Xn, X̂n)]. We want to show that D ≥ D(R).
Give reasons for the following steps in the proof:

D = E[d(Xn, X̂n(i(Xn)))] (3)

(a)
= E

[
1

n

n∑
i=1

d(Xi, X̂i)

]
(4)

(b)
=

1

n

n∑
i=1

E[d(Xi, X̂i)] (5)

(c)

≥ 1

n

n∑
i=1

D
(
I(Xi; X̂i)

)
(6)

(d)

≥ D

(
1

n

n∑
i=1

I(Xi; X̂i)

)
(7)

(e)

≥ D

(
1

n
I(Xn; X̂n)

)
(8)

(f)

≥ D(R) (9)
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