
EE276 Homework #6
Due on March 1, 5pm

1. Rate distortion for uniform source with Hamming distortion.
Consider a source X uniformly distributed on the set {1, 2, ...,m}. Find the rate
distortion function for this source with Hamming distortion, i.e.,

d(x, x̂) =

{
0, x = x̂

1, x ̸= x̂

via the following steps:

(a) Argue that R(D) = 0 when D ≥ 1− 1
m
.

(b) Show that for D ≤ 1 − 1
m
, I(X; X̂) ≥ log2m − h2(D) − D log2(m − 1) for any

joint distribution (X, X̂) satisfying the distortion constraint D.
Hint : Fano’s inequality.

(c) Find distribution p(x̂|x) that achieves the above lower bound when 0 ≤ D ≤ 1− 1
m
.

(d) Use the above parts to write down the rate-distortion function R(D) for D ≥ 0.

Solution:Rate distortion for uniform source with Hamming distortion.

X is uniformly distributed on the set {1, 2, ...,m}. The distortion measure is

d(x, x̂) =

{
0, x = x̂

1, x ̸= x̂

For (a), it’s enough to see that setting X̂ = 1 independently of X achieves distortion
1− 1/m.

For (b), consider any joint distribution that satisfies the distortion constraint D. Since
D = Pr(X ̸= X̂), we have by Fano’s inequality

H(X|X̂) ≤ h2(D) +D log(m− 1)

and hence

I(X; X̂) = H(X)−H(X|X̂)

≥ logm− h2(D)−D log(m− 1)

For (c), we can achieve this lower bound by choosing p(x̂) to be the uniform distribu-
tion, and the conditional distribution of p(x|x̂) to be

p(x̂|X) =

{
1−D, x = x̂
D

m−1
, x ̸= x̂
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It is easy to verify that this gives the right distribution on X and satisfies the bound
with equality for D < 1− 1/m.

For (d),

R(D) =

{
logm− h2(D)−D log(m− 1), 0 ≤ D ≤ 1− 1

m

0, D > 1− 1
m

2. Convexity of rate distortion function.
Assume (X, Y ) ∼ p(x, y) = p(x)p(y|x). In this problem, you will show that for fixed
p(x), I(X;Y ) is a convex function of p(y|x).

(a) The log sum inequality states that for n positive numbers a1, a2, · · · , an, and
b1, b2, · · · , bn, we have

n∑
i=1

ai log
ai
bi

≥

(
n∑

i=1

ai

)
log

(∑n
i=1 ai∑n
i=1 bi

)
with equality if and only if ai

bi
=constant. Using this inequality (you don’t have

to prove this inequality), show that D(p||q) is convex in (p, q), i.e.,

λD(p1||q1) + (1− λ)D(p2||q2) ≥ D(λp1 + (1− λ)p2||λq1 + (1− λ)q2)

(b) Let p1(y|x) and p2(y|x) be two different conditional distributions. For i ∈ {1, 2},
let pi(x, y) = pi(y|x)p(x), i.e., their corresponding joint distributions. For 0 ≤
λ ≤ 1, let pλ(y|x)

∆
= λp1(y|x) + (1− λ)p2(y|x). Show that

pλ(y) = λp1(y) + (1− λ)p2(y)

(c) The mutual information between random variables X and Y can be alternatively
written as

I(X;Y ) = D(p(x, y)||p(x)p(y))

Using this in addition to the results of the previous parts show that for fixed p(x),
I(X;Y ) is convex in p(y|x).

(d) Using the previous part, show that the rate distortion function R(I)(D) is convex
in the distortion parameter D.

Solution:Solution: Convexity of rate distortion function.
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(a) By definition,

D(λp1 + (1− λ)p2||λq1 + (1− λ)q2)

=
∑
x∈X

(λp1(x) + (1− λ)p2(x)) log
λp1(x) + (1− λ)p2(x)

λq1(x) + (1− λ)q2(x)

(a)

≤
∑
x∈X

λp1(x) log
λp1(x)

λq1(x)
+ (1− λ)p2(x) log

(1− λ)p2(x)

(1− λ)q2(x)

=
∑
x∈X

λp1(x) log
p1(x)

q1(x)
+ (1− λ)p2(x) log

p2(x)

q2(x)

=λD(p1||q1) + (1− λ)D(p2||q2)

where (a) is because of the log-sum inequality.

(b) We have

pλ(y) =
∑
x∈X

pλ(y|x)p(x)

=
∑
x∈X

(λp1(y|x) + (1− λ)p2(y|x))p(x)

=λ
∑
x∈X

p1(y|x)p(x) + (1− λ)
∑
x∈X

p2(y|x)p(x)

=λp1(y) + (1− λ)p2(y).

(c) Let p1(y|x) and p2(y|x) be two different conditional distributions, and let I1(X;Y )
and I2(X;Y ) denote that respective mutual information between X and Y when
p(x) is fixed. Note that

λI1(X;Y ) + (1− λ)I2(X;Y )

=λD(p1(x, y)||p(x)p1(y)) + (1− λ)D(p2(x, y)||p(x)p2(y))
≥D(λp1(x, y) + (1− λ)p2(x, y)||λp(x)p1(y) + (1− λ)p(x)p2(y))

=D(pλ(x, y)||p(x)pλ(y))
=Iλ(X;Y ).

where Il(X;Y ) corresponds to the mutual information between X and Y when
the conditional distribution of Y given X is pλ(y|x).

(d) Consider distortions D1 and D2. We need to show that

R(I)(λD1 + (1− λ)D2) ≤ λR(I)(D1) + (1− λ)R(I)(D2)

for any λ ∈ [0, 1]. To show this, consider the joint distributions achieving the
rate-distortion optimum at D1 and D2, p1(x, x̂) = p(x)p1(x̂|x) and p2(x, x̂) =
p(x)p2(x̂|x). Also consider the distribution pλ = λp1 + (1− λ)p2. Since distortion
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is a linear function of the joint probability distribution, the distortion for pλ is at
most λD1 + (1− λ)D2. By definition of R(I)(D),

R(I)(λD1 + (1− λ)D2) ≤ Iλ(X; X̂)

≤ λI1(X; X̂) + (1− λ)I2(X; X̂)

= λR(I)(D1) + (1− λ)R(I)(D2)

where Iλ, I1 and I2 denote the mutual informations when the distribution is
pλ, p1 and p2, respectively. The second inequality uses the convexity of mutual
information proved in part (c).

3. Shannon lower bound.
Let X be a continuous random variable with mean zero and variance σ2. R(D) is the
corresponding rate-distortion function for mean-squared distortion.

(a) Show the lower bound:

h(X)− 1

2
log(2πeD) ≤ R(D).

(b) Using the joint distribution shown in Figure 1, show the upper bound on R(D):

R(D) ≤ 1

2
log

σ2

D
(1)

Are Gaussian random variables harder or easier to describe than other random
variables with the same variance?

&%
'$

- -

?

����u? -

σ2−D
σ2

X

Z ∼ N
(
0, Dσ2

σ2−D

)

X̂

X̂ = σ2−D
σ2 (X + Z)

Figure 1: Joint distribution for upper bound on rate distortion function. The circle with the
dot represents multiplication.

Solution:Solution: Shannon Lower Bound.
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(a) To prove the lower bound, we use the same techniques as used for the Guassian
rate distortion function. Let (X, X̂) be random variables such that E(X − X̂)2 ≤
D. Then

I(X; X̂) = h(X)− h(X|X̂) (2)

= h(X)− h(X − X̂|X̂) (3)

≥ h(X)− h(X − X̂) (4)

≥ h(X)− h(N (0, E(X − X̂)2)) (5)

= h(X)− 1

2
log(2πe)E(X − X̂)2 (6)

≥ h(X)− 1

2
log(2πe)D. (7)

(b) Note that you could have used any constant instead of (σ2 − D)/σ2, since the
mutual information in question will be the same for all choices. Here, we’ll use
the one in the problem.

To prove the upper bound, we consider the joint distribution as shown in Figure 1,
and calculate the distortion and the mutual information between X and X̂. Since

X̂ =
σ2 −D

σ2
(X + Z) , (8)

we have

E(X − X̂)2 = E
(
D

σ2
X − σ2 −D

σ2
Z

)2

(9)

=

(
D

σ2

)2

EX2 +

(
σ2 −D

σ2

)2

EZ2 (10)

=

(
D

σ2

)2

σ2 +

(
σ2 −D

σ2

)2
Dσ2

σ2 −D
(11)

= D, (12)

since X and Z are independent and zero mean. Also the mutual information is

I(X; X̂) = h(X̂)− h(X̂|X) (13)

= h(X̂)− h(
σ2 −D

σ2
Z). (14)

Now

EX̂2 =

(
σ2 −D

σ2

)2

E(X + Z)2 (15)

=

(
σ2 −D

σ2

)2

(EX2 + EZ2) (16)

=

(
σ2 −D

σ2

)2(
σ2 +

Dσ2

σ2 −D

)
(17)

= σ2 −D. (18)
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Hence, we have

I(X; X̂) = h(X̂)− h(
σ2 −D

σ2
Z) (19)

= h(X̂)− h(Z)− log
σ2 −D

σ2
(20)

≤ h(N (0, σ2 −D))− 1

2
log(2πe)

Dσ2

σ2 −D
− log

σ2 −D

σ2
(21)

=
1

2
log(2πe)(σ2 −D)− 1

2
log(2πe)

Dσ2

σ2 −D
− 1

2
log

(
σ2 −D

σ2

)2

(22)

=
1

2
log

σ2

D
, (23)

which combined with the definition of the rate distortion function gives us the
required upper bound.

For a Gaussian random variable, h(X) = 1
2
log(2πe)σ2 and the lower bound is

equal to the upper bound. For any other random variable, the lower bound is
strictly less than the upper bound and hence non-Gaussian random variables
cannot require more bits to describe to the same accuracy than the corresponding
Gaussian random variables. This is not surprising, since the Gaussian random
variable has the maximum entropy and we would expect that it would be the
most difficult to describe.

4. Rate distortion for two independent sources. Let {Xi} be iid ∼ p(x) with
distortion d(x, x̂) and rate distortion function RX(D). Similarly, let {Yi} be iid ∼ p(y)
with distortion d(y, ŷ) and rate distortion function RY (D).

Suppose the {Xi} process and the {Yi} process are independent of each other.

Suppose we now wish to describe the process {(Xi, Yi)} subject to distortions E [d(X, X̂)] ≤
D1 and E [d(Y, Ŷ )] ≤ D2. Thus a rate RX,Y (D1, D2) is sufficient, where

RX,Y (D1, D2) = min
p(x̂,ŷ|x,y):E[d(X,X̂)]≤D1,E[d(Y,Ŷ )]≤D2

I(X, Y ; X̂, Ŷ )

Express RX,Y (D1, D2) in terms of RX(D1) and RY (D2). Can one simultaneously com-
press two independent sources better than by compressing the sources individually?

Solution: Rate distortion for two independent sources

(a) Given that X and Y are independent, we have

p(x, y, x̂, ŷ) = p(x)p(y)p(x̂, ŷ|x, y) (24)

Then

I(X, Y ; X̂, Ŷ ) = H(X, Y )−H(X, Y |X̂, Ŷ ) (25)

= H(X) +H(Y )−H(X|X̂, Ŷ )−H(Y |X, X̂, Ŷ ) (26)

≥ H(X) +H(Y )−H(X|X̂)−H(Y |Ŷ ) (27)

= I(X; X̂) + I(Y ; Ŷ ) (28)
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where the inequality follows from the fact that conditioning reduces entropy.
Therefore

RX,Y (D1, D2) = min
p(x̂,ŷ|x,y):Ed(X,X̂)≤D1,Ed(Y,Ŷ )≤D2

I(X, Y ; X̂, Ŷ ) (29)

≥ min
p(x̂,ŷ|x,y):Ed(X,X̂)≤D1,Ed(Y,Ŷ )≤D2

(
I(X; X̂) + I(Y ; Ŷ )

)
(30)

= min
p(x̂|x):Ed(X,X̂)≤D1

I(X; X̂) + min
p(ŷ|y):Ed(Y,Ŷ )≤D2

I(Y ; Ŷ ) (31)

= RX(D1) +RY (D2) (32)

(b) If
p(x, y, x̂, ŷ) = p(x)p(y)p(x̂|x)p(ŷ|y), (33)

then

I(X, Y ; X̂, Ŷ ) = H(X, Y )−H(X, Y |X̂, Ŷ ) (34)

= H(X) +H(Y )−H(X|X̂, Ŷ )−H(Y |X, X̂, Ŷ ) (35)

= H(X) +H(Y )−H(X|X̂)−H(Y |Ŷ ) (36)

= I(X; X̂) + I(Y ; Ŷ ) (37)

Let p(x, x̂) be a distribution that achieves the rate distortion RX(D1) at distortion
D1 and let p(y, ŷ) be a distribution that achieves the rate distortion RY (D2) at
distortion D2. Then for the product distribution p(x, y, x̂, ŷ) = p(x, x̂)p(y, ŷ),
where the component distributions achieve rates (D1, RX(D1)) and (D2, RX(D2)),
the mutual information corresponding to the product distribution is RX(D1) +
RY (D2). Thus

RX,Y (D1, D2) = min
p(x̂,ŷ|x,y):Ed(X,X̂)≤D1,Ed(Y,Ŷ )≤D2

I(X, Y ; X̂, Ŷ ) = RX(D1) +RY (D2)

(38)
Thus by using the product distribution, we can achieve the sum of the rates.

Therefore the total rate at which we encode two independent sources together
with distortions D1 and D2 is the same as if we encoded each of them separately.

5. Distortion-rate function. Let

D(R) = min
p(x̂|x):I(X;X̂)≤R

E [d(X, X̂)] (39)

be the distortion rate function.

(a) Is D(R) increasing or decreasing in R?

(b) Is D(R) convex or concave in R?

(c) Let X1, X2, . . . , Xn be i.i.d. ∼ p(x). Suppose one is given a code (Xn, X̂n) with

1

n
I(Xn; X̂n) ≤ R
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and resulting distortion D = E [d(Xn, X̂n)]. We want to show that D ≥ D(R).
Give reasons for the following steps in the proof:

D = E [d(Xn, X̂n(i(Xn)))] (40)

(a)
= E

[
1

n

n∑
i=1

d(Xi, X̂i)

]
(41)

(b)
=

1

n

n∑
i=1

E [d(Xi, X̂i)] (42)

(c)

≥ 1

n

n∑
i=1

D
(
I(Xi; X̂i)

)
(43)

(d)

≥ D

(
1

n

n∑
i=1

I(Xi; X̂i)

)
(44)

(e)

≥ D

(
1

n
I(Xn; X̂n)

)
(45)

(f)

≥ D(R) (46)

Solution: Distortion rate function.

(a) Since for larger values of R, the minimization in

D(R) = min
p(x̂|x):I(X;X̂)≤R

Ed(X, X̂) (47)

is over a larger set of possible distributions, the minimum has to be at least as
small as the minimum over the smaller set. Thus D(R) is a nonincreasing function
of R.

(b) By similar arguments as in Lemma 10.4.1, we can show that D(R) is a convex
function of R. Consider two rate distortion pairs (R1, D1) and (R2, D2) which lie
on the distortion-rate curve. Let the joint distributions that achieve these pairs
be p1(x, x̂) = p(x)p1(x̂|x) and p2(x, x̂) = p(x)p2(x̂|x). Consider the distribution
pl=lp1+(1−l)p2 . Since the distortion is a linear function of the distribution, we have
D(pl) = lD1 + (1 − l)D2. Mutual information, on the other hand, is a convex
function of the conditional distribution (Theorem 2.7.4) and hence

Ipl(X; X̂) ≤ lIp1(X; X̂) + (1− l)Ip2(X; X̂) = lR1 + (1− l)R2

Therefore we can achieve a distortion lD1+(1−l)D2 with a rate less than lR1+(1−l)R2

and hence

D(Rl) ≤ Dpl(X;X̂) (48)

= lD(R1) + (1− l)D(R2), (49)

which proves that D(R) is a convex function of R.
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6.

D = Ed(Xn, X̂n(i(Xn))) (50)

(a)
= E

1

n

n∑
i=1

d(Xi, X̂i) (51)

(b)
=

1

n

n∑
i=1

Ed(Xi, X̂i) (52)

(c)

≥ 1

n

n∑
i=1

D
(
I(Xi; X̂i)

)
(53)

(d)

≥ D

(
1

n

n∑
i=1

I(Xi; X̂i)

)
(54)

(e)

≥ D

(
1

n
I(Xn; X̂n)

)
(55)

(f)

≥ D(R) (56)

(a) follows from the definition of distortion for sequences
(b) from exchanging summation and expectation
(c) from the definition of the distortion rate function based on the joint distribution
p(xi, x̂i),
(d) from Jensen’s inequality and the convexity of D(R)
(e) from the fact that

I(Xn; X̂n) = H(Xn)−H(Xn|X̂n) (57)

=
n∑

i=1

H(Xi)−H(Xn|X̂n) (58)

=
n∑

i=1

H(Xi)−
n∑

i=1

H(Xi|X̂n, Xi−1, . . . , X1) (59)

≥
n∑

i=1

H(Xi)−
n∑

i=1

H(Xi|X̂i) (60)

=
n∑

i=1

I(Xi; X̂i) (61)

and
(f) follows from the definition of the distortion rate function, since 1

n
I(Xn; X̂n) ≤ R
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