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Lecture 11: Joint AEP
Lecturer: Tsachy Weissman

1 Joint AEP

We have the following setting:

X,Y random variables on alphabets X ,Y
(X,Y ) ∼ PX,Y

X ∼ PX

Y ∼ PY

(Xi, Yi) iid ∼ (X,Y )

p(xn) =

n∏
i=1

PX(xi)

p(yn) =

n∏
i=1

PY (yi)

p(xn, yn) =

n∏
i=1

PX,Y (xi, yi)

Definition 1. The set of jointly ϵ-typical sequences is:

A(n)
ϵ (X,Y ) =

{
(xn, yn) :

∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ ≤ ϵ,∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ ≤ ϵ,∣∣∣∣− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ ≤ ϵ,

}

Theorem 2. Joint AEP.

Part A. If (Xn, Y n) formed by iid (Xi, Yi):

1. P
(
(Xn, Y n) ∈ A

(n)
ϵ (X,Y )

)
n→∞−−−−→ 1

2. (1−ϵ)2n(H(X,Y )−ϵ) ≤
∣∣∣A(n)

ϵ (X,Y )
∣∣∣ ≤ 2n(H(X,Y )+ϵ), where the first inequality holds for sufficiently large

n, and the second inequality holds for all n.

Proof
We apply AEP, and convergence in probability on the three conditions of the jointly typical set. That is,
there exists n1, n2, n3 such that for all n > n1, we have

Pr

{∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ ≥ ϵ

}
< ϵ/3,
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and for all n > n2, we have

Pr

{∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ ≥ ϵ

}
< ϵ/3,

and for all n > n3, we have

Pr

{∣∣∣∣− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ ≥ ϵ

}
< ϵ/3.

All three apply for n greater than the largest of n1, n2, n3. Therefore the probability of the union the set of
(xn, yn) satisfying these inequalities must be less than ϵ, and for n sufficiently large, the probability of the

set A
(n)
ϵ is greater than 1− ϵ.

Upper Bound:

1 =
∑

p(xn, yn)

≥
∑

(xn,yn)∈A
(n)
ϵ (X,Y )

p(xn, yn)

≥
∑

(xn,yn)∈A
(n)
ϵ (X,Y )

2−n(H(X,Y )+ϵ), by definition of typicality

= 2−n(H(X,Y )+ϵ)
∣∣∣A(n)

ϵ (X,Y )
∣∣∣

⇒
∣∣∣A(n)

ϵ (X,Y )
∣∣∣ ≤ 2n(H(X,Y )+ϵ)

Lower Bound:
By Part 1, P

(
(Xn, Y n) ∈ A

(n)
ϵ (X,Y )

)
n→∞−−−−→ 1.

Thus, for large n:

1− ϵ ≤ P ((Xn, Y n) ∈ A(n)
ϵ (X,Y ))

≤
∑

(xn,yn)∈A
(n)
ϵ

2−n(H(X,Y )−ϵ)

= 2−n(H(X,Y )−ϵ)
∣∣∣A(n)

ϵ (X,Y )
∣∣∣

⇒
∣∣∣A(n)

ϵ (X,Y )
∣∣∣ ≥ (1− ϵ)2n(H(X,Y )−ϵ)

Part B. For (X̃n, Ỹ n) where PX̃,Ỹ = PX × PY (essentially you have sequences Xn, Y n which are drawn

from PX and PY independently):

(1− ϵ)2−n(I(X;Y )+3ϵ) ≤ P
{
(X̃n, Ỹ n) ∈ A(n)

ϵ (X,Y )
}
≤ 2−n(I(X;Y )−3ϵ)
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2 Recap: Communication problem

Recall the communication problem

J ∼ uniform ∈ {1, 2, ...,M} → encoder
Xn

−−→ memoryless channel PY |X
Y n

−−→ decoder → Ĵ

• rate = logM
n ( bits

channel use )

• probability of error Pe = P (Ĵ ̸= J)

• main result: the maximum rate of reliable communication C = max
PX

I(X;Y )

We can interpret the main result as two parts:

• Direct part: if R < max
PX

I(X;Y ), then R is achievable, i.e., ∃ schemes with rate ≥ R and Pe
n→∞−−−−→ 0.

• Converse part: if R > max
PX

I(X;Y ), then R is not achievable.

We are going to prove the direct part in this lecture.

3 Joint AEP

Suppose (X,Y ) ∼ PX,Y , X,Y takes values from finite alphabets X and Y, respectively. Therefore, (X,Y )
has alphabet X ×Y, where ‘×’ denotes direct product. In this setting, the set of of jointly ϵ-typical sequences
is:

A(n)
ϵ (X,Y ) =

{
(xn, yn) :| − 1

n
logP (xn)−H(X)| ≤ ϵ,

| − 1

n
logP (yn)−H(Y )| ≤ ϵ,

| − 1

n
logP (xn, yn)−H(X,Y )| ≤ ϵ

}
(1)

An illustration of the joint AEP An
ϵ (X,Y ) is shown in Fig. 1.

Part A

Recall that:
Theorem: If (Xi, Yi) iid ∼ (X,Y ), then for ∀ϵ > 0,

1. P
(
(Xn, Y n) ∈ A

(n)
ϵ (X,Y )

)
n→∞−−−−→ 1.

2. (1− ϵ)2n(H(X,Y )−ϵ) ≤ |A(n)
ϵ (X,Y )| ≤ 2(nH(X,Y )+ϵ), for all sufficiently large n.

Part B

Suppose now: X̃n d
= Xn, Ỹ n d

= Y n, and X̃n, Ỹ n are independent, where ‘
d
=’ means equality in distribution.

Then:

1. X̃n ≈ uniformly distributed on Aϵ
n(X)

2. Ỹ n ≈ uniformly distributed on Aϵ
n(Y )

3. X̃n, Ỹ n are independent ⇒ (X̃n, Ỹ n) ≈ uniformly distributed on Aϵ
n(X)×Aϵ

n(Y ).
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Figure 1: Illustration of the joint AEP set.

With the above properties, we arrive at

P
(
(X̃n, Ỹ n) ∈ A(n)

ϵ (X,Y )
)
≈ |A(n)

ϵ (X,Y )|
|Aϵ

n(X)×Aϵ
n(Y )|

≈ 2nH(X,Y )

2nH(X)2nH(Y )
= 2−nI(X;Y ) (2)

More rigorously, we have
Theorem: For ∀ϵ > 0 and sufficiently large n, the probability (X̃n, Ỹ n), where X̃n, Ỹ n are drawn from PX

and PY independently, falls into the jointly typical set satisfies

(1− ϵ) · 2−n(I(X;Y )+3ϵ) ≤ P
(
(X̃n, Ỹ n) ∈ A(n)

ϵ (X,Y )
)
≤ 2−n(I(X;Y )−3ϵ) (3)

This states that in the case of a pair of sequences, it is very unlikely for a pair of independent sequences to
look as if they came from a joint source described by P (X,Y ) with the exponent in the probability being
−nI(X;Y ).
Proof:
By definition

P
(
(X̃n, Ỹ n) ∈ A(n)

ϵ (X,Y )
)
=

∑
(X̃n,Ỹ n)∈A

(n)
ϵ (X,Y )

P (X̃n, Ỹ n) (4)

As previously shown, we have

(1− ϵ)2n(H(X,Y )−ϵ) ≤ |A(n)
ϵ (X,Y )| ≤ 2n(H(X,Y )+ϵ) (5)

Also, since X̃ and Ỹ satisfies (by the typicality of each of them)

2−n(H(X)+ϵ) ≤ P (X̃n) ≤ 2−n(H(X)−ϵ) (6)

2−n(H(Y )+ϵ) ≤ P (Ỹ n) ≤ 2−n(H(Y )−ϵ) (7)

Since X̃ and Ỹ are independent, by Inequalities 6, 7 we have

2−n(H(X)+H(Y )+2ϵ) ≤ P (X̃n, Ỹ n) = P (X̃n)P (Ỹ n) ≤ 2−n(H(X)+H(Y )−2ϵ) (8)

Thus by relations 4, 8∑
(X̃n,Ỹ n)∈A

(n)
ϵ (X,Y )

2−n(H(X)+H(Y )+2ϵ) ≤ P
(
(X̃n, Ỹ n) ∈ A(n)

ϵ (X,Y )
)
≤

∑
(X̃n,Ỹ n)∈A

(n)
ϵ (X,Y )

2−n(H(X)+H(Y )−2ϵ)

(9)
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By Inequality 5

(1− ϵ) · 2n(H(X,Y )−ϵ)2−n(H(X)+H(Y )+2ϵ) ≤ P
(
(X̃n, Ỹ n) ∈ A(n)

ϵ (X,Y )
)
≤ 2n(H(X,Y )+ϵ)2−n(H(X)+H(Y )−2ϵ)

(10)

(1− ϵ) · 2−n(I(X;Y )+3ϵ) ≤ P
(
(X̃n, Ỹ n) ∈ A(n)

ϵ (X,Y )
)
≤ 2−n(I(X;Y )−3ϵ) (11)

4 Direct Theorem

Theorem

If R < maxPX
I(X;Y ), then R is achievable (i.e., ∃ schemes with rate ≥ R and Pe

n→∞−−−−→ 0).

Rough idea in Proof
To establish a scheme, we are given a rate R < I(X;Y ). We need to show the existence of an achievable
scheme of codebook and decoding rule with rate R. As illustrated in Figure 2, we can randomly selected

2nR code words from the A
(n)
ϵ (X) as our codebook cn. By AEP on one variable, we know

P (Xn ∈ A(n)
ϵ (X)) ≈ 1 (12)

then we can just select xn i.i.d. from P (Xn) to construct our codebook cn.

Figure 2: Illustration of selecting the codebook. In this case, the original message is J and i is another message
other than J .

Suppose we wish to send a message J (also in Figure 2), and the signals sent is Xn(J) and channel output
is Y n. Then we have

P (Y n is jointly typical with Xn(J)) ≈ 1 (13)

and for a particular i ̸= J

P (Y n is jointly typical with Xn(i)) ≈ 2−nI(X;Y ) (14)

using the indepndence of Y n and Xn(i). Hence by union bound (provided R < I(X;Y ))

P (Y n is jointly typical with Xn(i) for any i ̸= J) ≤ 2−n(I(X;Y )−R) (very small) (15)

We can conclude that joint typicality decoding will be reliable for R < I(X;Y ).
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Proof:
For a fixed probability distribution PX , and rate R < I(X;Y ), we need to prove that R is reliable.

Let’s take a sufficiently small ϵ > 0 that makes the rate satisfy R < I(X;Y )− 3ϵ. Generate a codebook, cn,
with size M = ⌈2nR⌉ randomly by generating independent sequences Xn(1), Xn(2), ..., Xn(M) where each
of them is iid ∼ PX . The decoder is the joint typicality decoder :

Ĵ = Ĵ(Y n) =

{
j, if (Xn(j), Y n) ∈ A

(n)
ϵ (X,Y ) and (Xn(k), Y n) ̸∈ A

(n)
ϵ (X,Y ),∀k ̸= j

error, otherwise
(16)

In the situation of correctly decoding, the received symbol is jointly typical with the sent symbol and not
jointly typical with any other symbols. Otherwise, the decoder makes an error either because it cannot
find such a symbol in the codebook or because it finds more than one. Denoting the probability of error
conditioned by a specific codebook as

Pe(cn) = P (Ĵ ̸= J |Cn = cn) (17)

Let’s prove its expectation vanishes as n approaches infinity.

E[Pe(cn)] = P (Ĵ ̸= J) = ΣM
j=1P (Ĵ ̸= J |J = j)P (J = j) = P (Ĵ |J = 1) (18a)

≤ P ((Xn(1), Y n) ̸∈ A(n)
ϵ (X,Y )|J = 1) + ΣM

j=2P ((Xn(j), Y n) ∈ An
ϵ (X,Y )|J = 1) (18b)

= P ((Xn, Y n) ̸∈ An
ϵ (X,Y )) + (M − 1)P ((X̃n, Ỹ n) ∈ A(n)

ϵ (X,Y )) (18c)

≤ 2nR · 2−n(I(X;Y )−3ϵ) (18d)

= 2−n(I(X;Y )−3ϵ−R) (18e)
n→∞−−−−→ 0 (18f)

Inequality (18a) applies the Law of total probability and that P (Ĵ ̸= J |J = j) = P (Ĵ ̸= J |J = i) by sym-
metry of the scheme. Inequality (18b) applies the union bound. In inequality (18c), the first term converges
to 0 as n → ∞, and the second term applies the joint AEP conclusion part B. According to the assumption
that R < I(X;Y )− 3ϵ, expression (18e) converges to 0 as n → ∞.

Note 1: ∃cn, s.t. |cn| ≥ 2nR and Pe(cn) ≤ E[Pe(cn)]. This implies

(1) ∃ a sequence of {cn}n>=1 with |cn| ≥ 2nR and Pe
n→∞−−−−→ 0

(2) R is achievable

Note 2: Our notion of reliability is Pe = P (Ĵ ̸= J) = ΣM
j=1P (Ĵ ̸= J |J = j)P (J = j), which is

the average probability of error over all symbols. However, one can consider a more stringent criterion
Pmax = max1≤j≤M P (Ĵ ̸= J |J = j). The exercise below shows that the direct part holds even for this
criterion.

Exercise
Show that given cn with Pe(cn), ∃c′n s.t. |c′n| ≥ 1

2 |cn| and Pmax(c
′
n) ≤ 2Pe(cn).

Proof:
We prove this using an expurgation argument. We remove the |cn|/2 codewords with largest Pe and let c′n be
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the set of the remaining codewords. Clearly, |c′n| ≥ 1
2 |cn| is satisfied. We wish to show Pmax(c

′
n) ≤ 2Pe(cn).

It can be proved by contradiction.
Assume Pmax(c

′
n) > 2Pe(cn), i.e., the largest Pe in the smaller half in cn would be larger than Pe(cn), which

is the average of all the Pe’s in cn. Since the error probabilities in cn \ c′n are at least Pmax(c
′
n), the average

Pe(cn) >
1
2Pmax(c

′
n). But since Pmax(c

′
n) > 2Pe(cn), we get Pe(cn) > Pe(cn), a contradiction.

To show that the rate is unchanged, the rate with c′n is

R′ ≥
log( 122

nR)

n
= R− 1

n
. (19)

Hence as n → ∞, R′ → R is unchanged.

7


