
EE276 Information Theory Lecture 13 - 02/20/2024

Lecture 13: Lossy Compression & Rate Distortion Theory
Lecturer: Tsachy Weissman

1 Channel Coding Theorem: Converse Part Continued

1.1 Pe vs Pmax

We previously talked about Pmax which may be more reasonable for some practical systems, and puts a
more stringent condition than Pe:

Pe = P (Ĵ ̸= J) =
1

m

m∑
j=1

P (Ĵ ̸= j|J = j)

Pmax = max
j

P (Ĵ ̸= j|J = j)

Claim. Given a coding scheme Cn such that Pe → 0 as n → ∞, we can find another scheme C ′
n, that

achieves Pmax → 0.
Proof. By Markov’s inequality, we have∣∣{1 ≤ j ≤ m : P (Ĵ ̸= j|J = j) ≤ 2Pe}

∣∣ ≥ m

2

Hence, given Cn with |Cn| = m, RC and Pe, there exists a C ′
n such that |C ′

n| ≥ m/2 and Pmax ≤ 2Pe. The

rate of this new code is then Rc′n
≥ log(M/2)

n = logM
n − 1

n ≥ R − ϵ for arbitrarily small ϵ when n is large.
Note Pmax of C ′

n goes to zero as Pe → 0.
Thus, capacity is the same regardless of whether reliable communication is with respect to Pe or Pmax.

For the rest of this lecture, we introduce basic definitions for lossy compression schemes and introduce
rate distortion theory. We present without proof the main result equating the rate distortion function
with the informational rate distortion function (R(D) = R(I)(D)) and provide examples of rate distortion
computations. Lossy compression is of interest even outside of information theory, with applications in
statistics and machine learning (clustering).

2 Compression

Recall the following setup for the general compression problem:

• source sequence: U1, U2, ...UN ∼ iid U ∈ U .

• encoder: maps N source symbols to n bits

• decoder: maps the n bits to the reconstructed symbols V1, V2, ...VN/sim

• rate: the number of bits used per source symbol (n/N)

U1, U2, ..., UN → encoder
n bits−−−−→ decoder → V1, V2, ..., VN (1)

For lossless compression, we want to have the reconstructed sequence perfectly match the source
sequence. In lossy compression, we are willing to accept some amount of reconstruction error (distortion)
in exchange for a potentially lower compression rate than could be achieved losslessly.
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3 Rate Distortion Theory

3.1 Definitions

Definition 1. a distortion function is a mapping

d : U × V → R≥0 (2)

Definition 2. the distortion between sequences UN and V N is

d(UN , V N ) =
1

N

N∑
i=1

d(Ui, Vi) (3)

Note that the Uis are random variables, so this distortion is itself a random variable. Therefore, when
talking about the distortion of a given scheme, we usually mean the expected per-symbol distortion

E

[
1

N

N∑
i=1

d(Ui, Vi)

]
(4)

With lossy compression, there is a natural tradeoff between the rate and the distortion. The more
distortion we are willing to accept, the lower the rate we can hope to achieve. However, we usually will
want to constrain the distortion to some upper limit. At one extreme, if we constrain ourselves to have zero
distortion, we end up back in the lossless compression setup where we know that the minimal rate is the
entropy.

Definition 3. a compression scheme is defined to be a tuple (N , n, encoder, decoder)

Definition 4. a rate/distortion pair (R,D) is said to be achievable if ∀ϵ > 0, ∃ scheme such that

n

N
≤ R+ ϵ (5)

E

[
1

N

N∑
i=1

d(Ui, Vi)

]
≤ D + ϵ (6)

Definition 5. rate-distortion function

R(D) ≜ inf{R′ : (R′, D) is achievable} (7)

The rate-distortion function is a natural analog to the channel capacity in a communication context. It
represents the “best” rate we can hope to achieve for a given level of distortion.

Definition 6. information rate-distortion function

R(I)(D) ≜ min
E[d(U,V )]≤D

I(U ;V ) (8)

The information rate-distortion function is a natural analog to the information channel capacity in a
communication context. Note that the distribution of U is given to us, so this minimization problem is
actually over all possible conditional distributions of V |U .

3.2 Main Result

We now have the necessary setup to state the main result of rate distortion theory.

Theorem 7.

R(D) = R(I)(D) (9)

2



4 Intuition and Examples

Today, we give a sense of why perhaps this main result makes sense. In the next few lectures, we will prove
the main result and present concrete lossy compression schemes.

4.1 What does R(D) look like (qualitatively)?

Figure 1: Sketch of a rate-distortion function

Without focusing on a specific source distribution, we can understand some basic properties of the rate-
distortion function. In Figure 1, we can see that R(D) takes its maximal value at D = 0. This is the lossless
compression case, and thus R(0) = H(U). On the other end, we see that R(D) reaches its minimal value of
0 at Dmax ≜ minv E[d(U, v)]. Intuitively, if we are willing to accept distortion of Dmax, then we can simply
encode 0 bits and always decode as v. One other property we can see in the graph is that the rate-distortion
function is monotonically decreasing. This makes sense as we can always compress at at least the same rate
if given a higher distortion allowance. Further, we have the following convexity constraint on R(D).

Claim: R(D) is convex, i.e., for all 0 ≤ α ≤ 1, D0 and D1,

R(αD0 + (1− α)D1) ≤ αR(D0) + (1− α)R(D1)

Proof idea: Consider the “time-sharing scheme” for encoding the source symbols (U1, U2, · · · , UN ). We
take the first αN source symbols and encode them by employing a “good” scheme for D = D0, and for the
remaining (1− α)N source symbols, we employ a “good“ scheme for D = D1.

The expected distortion of this scheme is then αD0 + (1− α)D1. From this, it follows that the minimal
number of bits needed across all schemes is at most the number of bits needed for this specific scheme, i.e.:

R(αD0 + (1− α)D1) ≤ αR(D0) + (1− α)R(D1),

where the left hand side is the minimal number of bits required to achieve distortion αD0 + (1 − α)D1,
and the right hand side is the number of bits per symbol required by our “time-sharing” scheme to achieve
distortion αD0 + (1− α)D1.

Homework exercise: Verify using properties of mutual information that the informational rate distor-
tion function R(I)(D) is convex, without assuming the main result. Next week, when we prove the main
result R(I)(D) = R(D), we will use this property.

4.2 Examples

Example I: Let U ∼ Bern(p) with p ≤ 1/2 and define the Hamming distortion as:

d(u, v) =

{
0, u = v

1, u ̸= v
.
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In this setting, U and V take values in U and V, respectively, where U = V = {0, 1}. Here, we claim that:

R(D) =

{
h2(p)− h2(D), 0 ≤ D ≤ p

0, D > p
.

Note that the function here is convex, since in the region 0 ≤ D ≤ p, the function takes the value of
a constant minus the binary entropy function, and the binary entropy function is concave. In the region
D > p, the reconstruction can be chosen to be all zeros, with no bits to describe the source symbols, and
still achieve the desired maximum distortion. Further, when D = 0 and no distortion is allowed, we need
h2(p) bits, which is consistent with our previous work on entropy.

Proof: When the allowed distortion is D > p, we don’t need any description. Thus, let us consider the
case where 0 ≤ D ≤ p. For any U , V such that U ∼ Bern(p) and E[d(U, v)] = P (U ̸= V ) ≤ D ≤ p ≤ 1/2,
consider

I(U ;V ) = H(U)−H(U |V ) = H(U)−H(U ⊕2 V |V )

We have that conditioning reduces entropy, so the above quantity satisfies the inequality below (with equality
if U ⊕2 V and V are independent):

H(U)−H(U ⊕2 V |V ) ≥ H(U)−H(U ⊕2 V ) = h2(p)− h2(P (U ̸= V ))

Next, note that the binary entropy function h2 is monotonic on the interval [0, 1/2], so the following holds
(with equality if P (U ̸= V ) = D):

h2(p)− h2(P (U ̸= V )) ≥ h2(p)− h2(D)

Thus, I(U ;V ) ≥ h2(p) − h2(D) (so R(D) = R(I)(D) = minE[d(U,V )≤D] ≥ h2(p) − h2(D)). We would like
to show that equality here is achievable, which occurs if the two equality conditions above are satisfied.
This is the case if we can find U , V in the feasible set such that: (1) U ⊕2 V is independent of V and (2)
U ⊕2 V ∼ Bern(D).

That is, can we find a binary variable V ∼ Bern(q) such that if you add (mod 2) Z ∼ Bern(D) with Z
independent of V , it will yield our source U ∼ Bern(p) (note V ⊕2 Z = U ⇐⇒ Z = U ⊕2 V )? If that is the
case, we must have

p = P (U = 1) = q(1−D) + (1− q)D = q(1− 2D) +D

⇒ 0 ≤ q =
p−D

1− 2D
≤

1
2 −D

1− 2D
=

1

2
.

Thus, we found a joint distribution U , V for which the equality I(U ;V ) = h2(p) − h2(D) holds, and so in
the region 0 ≤ D ≤ p, R(D) = h2(p)− h2(D), completing our proof.

Example II: Now, let’s look at an analog source U ∼ N (0, σ2). We claim that

R(D) =

{
1
2 log(σ

2/D), 0 < D ≤ σ2

0, D > σ2
.

This function is convex, and for allowed distortion D greater than the variance σ2, we don’t need any
bits to describe the reconstruction, since it can be taken to be always zero. Next, this is an analog source,
so the entropy is infinite, so we can’t expect to describe it and get zero distortion for a fixed number of bits
per source symbol. Note further that if we invert R(D), we obtain D(R) (the “distortion rate function”) as
D(R) = σ22−2R.

Next time, we will finish this computation, give a geometric interpretation of this example and start
developing tools like the Method of Types and the notion of conditional typicality. Equipped with those
notions, we will prove the Main Result. We will also discuss the construction of concrete schemes for lossy
compression and their relation to clustering schemes.
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