
EE276 Information Theory Lecture 14 - 02/22/2024

Lecture 14: Lossy Compression & Rate Distortion Theory Continued
Lecturer: Tsachy Weissman

In this lecture, we introduce basic definitions for lossy compression schemes and introduce rate distortion
theory. We present without proof the main result equating the rate distortion function with the informational
rate distortion function (R(D) = R(I)(D)) and provide examples of rate distortion computations. Lossy
compression is of interest even outside of information theory, with applications in statistics and machine
learning (clustering).

1 Compression

Recall the following setup for the general compression problem:

• source sequence: U1, U2, ...UN ∼ iid U ∈ U .

• encoder: maps N source symbols to n bits

• decoder: maps the n bits to the reconstructed symbols V1, V2, ...VN/sim

• rate: the number of bits used per source symbol (n/N)

U1, U2, ..., UN → encoder
n bits−−−−→ decoder → V1, V2, ..., VN (1)

For lossless compression, we want to have the reconstructed sequence perfectly match the source
sequence. In lossy compression, we are willing to accept some amount of reconstruction error (distortion)
in exchange for a potentially lower compression rate than could be achieved losslessly.

2 Rate Distortion Theory

2.1 Definitions

Definition 1. a distortion function is a mapping

d : U × V → R≥0 (2)

Definition 2. the distortion between sequences UN and V N is

d(UN , V N ) =
1

N

N∑
i=1

d(Ui, Vi) (3)

Note that the Uis are random variables, so this distortion is itself a random variable. Therefore, when
talking about the distortion of a given scheme, we usually mean the expected per-symbol distortion

E

[
1

N

N∑
i=1

d(Ui, Vi)

]
(4)
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With lossy compression, there is a natural tradeoff between the rate and the distortion. The more
distortion we are willing to accept, the lower the rate we can hope to achieve. However, we usually will
want to constrain the distortion to some upper limit. At one extreme, if we constrain ourselves to have zero
distortion, we end up back in the lossless compression setup where we know that the minimal rate is the
entropy.

Definition 3. a compression scheme is defined to be a tuple (N , n, encoder, decoder)

Definition 4. a rate/distortion pair (R,D) is said to be achievable if ∀ϵ > 0, ∃ scheme such that

n

N
≤ R+ ϵ (5)

E

[
1

N

N∑
i=1

d(Ui, Vi)

]
≤ D + ϵ (6)

Definition 5. rate-distortion function

R(D) ≜ inf{R′ : (R′, D) is achievable} (7)

The rate-distortion function is a natural analog to the channel capacity in a communication context. It
represents the “best” rate we can hope to achieve for a given level of distortion.

Definition 6. information rate-distortion function

R(I)(D) ≜ min
E[d(U,V )]≤D

I(U ;V ) (8)

The information rate-distortion function is a natural analog to the information channel capacity in a
communication context. Note that the distribution of U is given to us, so this minimization problem is
actually over all possible conditional distributions of V |U .

3 Example: Gaussian Source

In the case where U ∼ N(0, σ2), d(u, v) = (u− v)2.
Claim:

R(D) =

{
1
2 log

σ2

D 0 < D ≤ σ2

0 D > σ2

Which is equivalent to:

D(R) = σ22−2R

In particular, the best distortion that we can achieve if we are willing to dedicate only 1 bit per source symbol

is D(1) = σ2

4 . This can be compared to the result at the start of class: D = π−2
π σ2 ≈ 0.363σ2 (distortion

that we can achieve if we work symbol by symbol and represent every symbol with one bit (see lecture note 2)).

Proof of claim:
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For any U, V such that U ∼ N(0, σ2) and E[(U − V )2] ≤ D:

I(U ;V ) = h(U)− h(U |V )

= h(U)− h(U − V |V ) differential entropy is invariant under a constant,and V is a constant given V

≥ h(U)− h(U − V ) because conditioning reduces entropy

≥ h(U)− h(N(0, D)) gaussians maximize differential entropy among distributions

with bounded second moment

=
1

2
log(2πeσ2)− 1

2
log(2πeD)

=
1

2
log

σ2

D

⇒ R(D) ≥ 1
2 log

σ2

D

We can achieve an equality if and only if:

1. h(U − V |V ) = h(U − V ), i.e. U − V independent from V

2. h(U − V ) = h(N(0, D)), i.e. U − V ∼ N(0, D)

Can we find a distribution V that satisfies these two conditions?
The answer is yes. If we take V ∼ N(0, σ2 − D) and add an independent Gaussian G ∼ N(0, D), we

reconstruct U by U = V +G.

1. U − V = G is independent of V

2. U − V = G ∼ N(0, D)

Conclusion: R(D) = 1
2 log

σ2

D

4 Interpretation of the Gaussian example

We have found that the minimum achievable rate is R(D) = 1
2 log

σ2

D when U ∼ N(0, σ2).

If we want to visualize this, we can consider the values U1, ..., Un as a vector in Rn. Using the law of large
numbers and the fact that E[U2] = σ2, we know that:

1

n

n∑
i=1

U2
i ≈ σ2

n∑
i=1

U2
i ≈ nσ2

√√√√ n∑
i=1

U2
i ≈

√
nσ2

||U ||2 ⪅
√
nσ2

So (Ui) ∈ Rn is in a ball centered on 0 and of radius
√
nσ2.
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Figure 1: Gaussian example interpretation

Furthermore, we can represent each reconstructed element V n(i) for i ∈ [1,M ] of the codebook also in the
space Rn. As we need to achieve a distortion lower than D, each point V n(i) can represent points in a ball
of radius

√
nD centered on V n(i). This is because we have:

d(Un, V n) ≤ D

1

n

n∑
i=1

(Ui − Vi)
2 ≤ D

1

n
||U − V ||22 ≤ D

||U − V ||2 ≤
√
nD

Therefore if we want to cover the whole ball of radius
√
nσ2 with these small balls of radius

√
nD, we

need the number of points in the codebook M to be:

M ≥ V ol(ball of radius
√
nσ2)

V ol(ball of radius
√
nD)

=
cn(

√
nσ2)n

cn(
√
nD)n

=
(σ2

D

)n/2
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Because the rate is R = m
n = logM

n , we obtain:

R =
logM

n

≥ 1

2
log

σ2

D

To rephrase, we need at least these M smaller balls to cover the full ball of radius
√
nσ2. In lower

dimensions, it looks like there is a lot of overlap between the smaller balls. But in higher dimensions, it is

easy to cover the whole space in a very efficient way and achieve the optimal rate R(D) = 1
2 log

σ2

D .

The optimal V we found before is V ∼ N(0, σ2 − D), which means we will take the reconstructed
codewords V n(i) iid. on the sphere of radius

√
n(σ2 −D) to cover the whole space.

Even in low dimensions like n = 5 or n = 6 we can see that choosing these random codewords is already
a very effective scheme.

5


