
EE276 Information Theory Lecture 15 - 02/27/2024

Lecture 15: Method of Types
Lecturer: Tsachy Weissman

In last lecture we framed the problem of lossy compression and gave the main theorem that characterizes
the tradeoff between the rate and the distortion in the context of lossy compression. With that as our
motivation, this week we are going to talk about the method of types, expand our tools related to typical
sequences, the notion of strong typicality and the notion of conditional types, which are not only interesting
in their own right, but also serve very well when we go back to establish the main result in lossy compression.
We are also going to talk about some concrete schemes for lossy compression and how they are related to
clustering and machine learning problems. Today we are going to talk about Method of Types.

1 Notation

Denote: xn = {x1, . . . , xn} with xi ∈ X = {1, . . . , r} and

N(a|xn) =

n∑
i=i

I{xi=a},

Pxn(a) =
N(a|xn)

n
.

2 Empirical distribution and type class

Definition 1 (Empirical distribution, type class). The empirical distribution of xn is the probability
vector (Pxn(1), . . . ,Pxn(r)). Pn denotes the collection of all empirical distribution of sequences of length n,
i.e. Pn = {Pxn : xn ∈ Xn}. For P ∈ Pn, the type class or type of P is T (P) = {xn : Pxn = P}. The type
class of xn is Txn = T (Pxn) = {x̃n : Px̃n = Pxn}.

Example 2. If X = {0, 1}, then Pn =
{
(1, 0),

(
n−1
n , 1

n

)
,
(
n−2
n , 2

n

)
, . . . , (0, 1)

}
Example 3. If X = {a, b, c}, n = 5 and xn = (a, a, c, b, a), then Pxn =

(
3
5 ,

1
5 ,

1
5

)
,

Txn = {(a, a, a, b, c), (a, a, a, c, b), . . . , (c, b, a, a, a)} and |Txn | =
(

5
3 1 1

)
= 5!

3! 1! 1! = 20.
In the following we show that the number of different type classes induced by xn, |Pn|, can be upper

bounded by something which is polynomial in n, which doesn’t increase exponentially with n.

Theorem 4. |Pn| ≤ (n+ 1)r−1.

Proof
Every empirical distribution Pxn is determined by vector (N(1|xn), N(2|xn), · · · , N(r−1|xn)), whereN(a|xn)
means the number of times that the symbol a appears in the sequence xn. Since 0 ≤ N(a|xn) ≤ n, each of
N(a|xn) can take on no more than n+1 values.
Thus we have a vector of length r− 1 and each element can take no more than n+1 values. Therefore there
are at most (n+ 1)r−1possibilities.

Note that for the case r = 2, the bound is tight. But the bound is not tight for the cases r ≥ 3 because we
didn’t incorporate the constraint that

∑r−1
a=1 N(a|xn) must be less than or equal to n when calculating the

upper bound.
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Further notation

- For probability mass function(PMF) Q = {Q(x)}x∈X , we write H(Q) for H(X) when X is distributed
according to Q.
- Q(xn) =

∏n
i=1 Q(xi). For S ⊂ Xn, Q(S) =

∑
xn∈S Q(xn)

Theorem 5. ∀xn,Q(xn) = 2−n[H(Pxn )+D(Pxn ||Q)], where H(Pxn) is referred to as empirical entropy of xn.

Proof

Q(xn) =

n∏
i=1

Q(xi)

= 2
∑n

i=1 log Q(xi)

= 2
∑

a∈χ N(a|xn) log Q(a)

= 2
−n

[∑
a∈χ

N(a|xn)
n log 1

Q(a)

]

= 2
−n

[∑
a∈χ Pxn (a) log

(
1

Q(a)

Pxn (a)

Pxn (a)

)]
= 2−n[H(Pxn )+D(Pxn ∥Q)]

The next result is about the size of the type class associated with the empirical distribution P.

Theorem 6. ∀P ∈ Pn,
1

(n+1)r−1 2
nH(P) ≤ |T (P)| ≤ 2nH(P).

Note: We could calculate the size of type class |T (P)| exactly, which is

|T (P)| =
(

n

n · P(1), n · P(2), · · · , n · P(r)

)
.

But for our purposes, what we care about are (1) the behavior of this quantity for n large on an exponential
scale and (2) how it is related to quantities that are familiar and important to us, such as entropy.

Proof of upper bound in Theorem 6:

1 ≥ P(T (P))

=
∑

xn∈T (P)

P(xn)

=
∑

xn∈T (P)

2−n[H(Pxn )+D(Pxn ||P)] (by Theorem 5, with Q=P)

=
∑

xn∈T (P)

2−n[H(P)+D(P ||P)] (all elements xn ∈ T (P ) have empirical distribution P)

= |T (P)| · 2−nH(P)

Thus by simple algebraic manipulation we have:

|T (P)| ≤ 2nH(P)

Before proving the lower bound, we prove two lemmas.
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Lemma 7. For non-negative integers m,n, m!
n! ≥ nm−n.

Proof :
If m ≥ n,

m!

n!
= m(m− 1) · · · (n+ 1)︸ ︷︷ ︸

(m−n) factors, each≥n

≥ nm−n.

If m < n,

m!

n!
=

1

n(n− 1) · · · (m+ 1)︸ ︷︷ ︸
(n−m) factors, each≤n

≥ 1

nn−m
= nm−n.

□

Lemma 8. ∀P,Q ∈ Pn,P(T (P)) ≥ P(T (Q)).

Proof :

P(T (P))

P(T (Q))
=

|T (P)|(
∏

a∈X P(a)nP(a))

|T (Q)|(
∏

a∈X P(a)nQ(a))

=

(
n

nP(1),nP(2),··· ,nP(r)

)(
n

nQ(1),nQ(2),··· ,nQ(r)

) ∏
a∈X

P(a)nP(a)−nQ(a)

=
∏
a∈X

(nQ(a))!

(nP(a))!
P(a)n[P(a)−Q(a)]

≥
∏
a∈X

(nP(a))nQ(a)−nP(a) P(a)n[P(a)−Q(a)] (by Lemma 7)

=
∏
a∈X

nn[Q(a)−P(a)]

= nn
∑

a∈X (Q(a)−P(a)) = 1

□
Proof of lower bound in Theorem 6:

1 = P(Xn)

=
∑
Q∈Pn

P(T (Q))

≤ |Pn| · max
Q∈Pn

P(T (Q))

= |Pn| · P(T (P)) (by Lemma 8)

= |Pn| · |T (P)| · 2−n[H(P)+D(P ||P)] (by Theorem 5)

≤ (n+ 1)r−1 · |T (P)| · 2−nH(P) (by Theorem 4)

Thus by simple algebraic manipulation we have:

1

(n+ 1)r−1
· 2nH(P) ≤ |T (P)|
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Noting that by Theorem 5, we have that, for any probability mass function Q and any empirical distri-
bution P ∈ Pn,

Q(T (P)) = |T (P)|2−n[H(P)+D(P ||Q)].

Together with Theorem 6, we obtain the following theorem.

Theorem 9. ∀PMF Q,∀P ∈ Pn,
1

(n+1)r−1 2
−nD(P ||Q) ≤ Q(T (P)) ≤ 2−nD(P ||Q).

This shows that up to an insignificant polynomial factor ( 1
(n+1)r−1 ), on an exponential scale, the prob-

ability that the sequence looks like it came from source P, if the data is generated i.i.d. from distribution
Q, is exponentially unlikely. The farther away P is from Q, the more unlikely it is. Note in the expression
above, the relative entropy D(P ||Q) is between P, the “wrong” source, and Q, the true source, unlike in the
cost of mismatch in lossless compression D(p||q) (see lecture 6), p is the true source while q is the “wrong”
source.
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