
EE276 Information Theory Lecture 16 - 02/29/2024

Lecture 16: Strong, Conditional, & Joint Typicality
Lecturer: Tsachy Weissman

In this lecture, we will continue developing tools that will be useful going forward, in particular in the context
of lossy compression.1 We will introduce the notions of Strong, Conditional, and Joint Typicality.

1 Notation

A quick recap of the notation:

1. Random variables: i.e. X

2. Alphabet: i.e. X

3. Specific values: i.e. x

4. Sequence of values: i.e. xn

5. Set of all probability mass functions on alphabet X : M(X )

6. Empirical distribution of a sequence xn: Pxn(a) := N(a|xn)
n [N(a|xn) is # of times symbol a

appears in xn]

2 Typicality

2.1 Strong Typicality

Definition 1. A sequence xn ∈ Xn is strongly δ-typical with respect to a probability mass function
P ∈ M(X ) if

|Pxn(a)− P (a)| ≤ δ · P (a), ∀a ∈ X (1)

In words, a sequence is strongly δ-typical with respect to P if its empirical distribution is close to the proba-
bility mass function P . [δ is some fixed number, typically small.]

Definition 2. The strongly δ-typical set [or simply strongly typical set] of p, Tδ(P ), is defined as the set
of all sequences that are strongly δ-typical with respect to P , i.e.

Tδ(P ) = {xn : |Pxn(A)− P (a)| ≤ δ · P (a), ∀a ∈ X} (2)

Recall: the weakly ϵ-typical set of an IID source P is defined as Aϵ(P ) := {xn :
∣∣− 1

n logP (xn)−H(P )
∣∣ ≤ ϵ}.

Note: The condition for inclusion in the weakly ϵ-typical set is indeed weaker than the condition to be

in the strongly δ-typical set. − 1
n logP (xn) = 1

n log 1
n∏

i=1
P (xi)

= 1
n

n∑
i=1

log 1
P (xi)

= 1
n

∑
a∈X

N(a|xn) log 1
P (a) =

∑
a∈X

Pxn(a) log 1
P (a) . This is ≈

∑
a∈X

P (a) log 1
P (a) = H(P ) if Pxn ≈ P , i.e. if the empirical distribution induced

by xn is “close” to P , i.e. if the sequence is strongly typical. Thus, P (xn) ≈ P ⇒ − 1
n logP (xn) ≈ H(P ),

i.e. strong typicality implies weak typicality. In the homework, we will show more precisely that

1Optional Reading: Chapter 2 in El Gamal and Kim, Network Information Theory.
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Tδ(P ) ⊆ Aϵ(P )

for ϵ = δ ·H(P ).
Example: Here is an example of a sequence that is weakly typical but not strongly typical. Let P be the
uniform distribution over X , i.e. P (a) = 1

|X | ∀a ∈ X . Then P (xn) = 1
|X |n ⇒ − 1

n log p(xn) = log |X | =

H(P ) ∀xn ∈ Xn. Thus, Aϵ(P ) = Xn, while Tδ(P ) = {xn :
∣∣∣Pxn(a)− 1

|X |

∣∣∣ ≤ δ
|X | , ∀a ∈ X}. In other words,

the weakly typical set is the set of all sequences over X , whereas the strongly typical set is the set of all
sequences such that each symbol appears roughly the same number of times along the sequence.

We have already shown that the probability of a particular sequence being in Aϵ(P ) approaches 1 as n → ∞.
In the homework, we will investigate the probability of a particular sequence being in Tδ(P ), i.e. P (Tδ(P )).
In fact, this also approaches 1 as n → ∞.

lim
n→∞

P (Tδ(P )) = 1

This is also a manifestation of the law of large numbers, which tells us that for every symbol a, the fraction
of times that it appears in a sequence will approach its true probability under the source P , with probability
close to 1. Finally, we will show that the size of the set of strongly δ-typical sequences |Tδ(P )| is roughly
2nH(P ); more precisely, that for all sufficiently large n:

2n[H(P )−ϵ(δ)] ≤ |Tδ(P )| ≤ 2n[H(P )+ϵ(δ)] (3)

where ϵ(δ) → 0 as δ → 0. The lower bound follows from the previously shown fact that any set with
size smaller than 2nH(P ) has vanishing probability. The upper bound simply follows from the fact that
Tδ(P ) ⊆ Aϵ(P ).

2.2 Joint Typicality

In the following, we refer to the sequences xn = (x1, x2, . . . , xn), xi ∈ X and yn = (y1, y2, . . . , yn), yi ∈ Y,
where X and Y are finite alphabets.

Definition 3. The joint empirical distribution of (xn, yn) is:

Pxn,yn(x, y) =
1

n
N(x, y|xn, yn) (4)

where N(x, y|xn, yn) :=
n∑

i=1

1{xi=x,yi=y}

Definition 4. (xn, yn) is jointly δ-typical with respect to P ∈ M(X × Y) if

|Pxn,yn(x, y)− P (x, y)| ≤ δ · P (x, y), ∀x ∈ X , y ∈ Y (5)

where N(x, y|xn, yn) :=
n∑

i=1

1{xi=x,yi=y}

Definition 5. The jointly δ-typical set with respect to P ∈ M(X × Y) is

Tδ(P ) = {(xn, yn) : (xn, yn) is jointly δ-typical with respect to P} (6)

where N(x, y|xn, yn) :=
n∑

i=1

1{xi=x,yi=y}
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Observe that these definitions are just special cases of the definitions of the empirical distribution, strong
δ-typicality, and the strongly δ-typical set, since a pair of a sequence in X and a sequence in Y is simply a
sequence in the alphabet of pairs X × Y.

Notation: For convenience, we will sometimes write Tδ(X) in place of Tδ(P ) ,when X ∼ P , or Tδ(X,Y ) in
place of Tδ(P ) when (X,Y ) ∼ P .

In the homework, we will show that ∀g : X → R, xn ∈ Tδ(X),

(1− δ)E[g(X)] ≤ 1

n

n∑
i=1

g(xi) ≤ (1 + δ)E[g(X)]

In other words, for strongly typical sequences, the average value of g computed on the components of the

sequence is “close to” the expected value of g(X). Observe that 1
n

n∑
i=1

g(xi) =
∑
a∈X

Pxn(a) · g(a); the latter

is the expectation of g(X) when X is distributed according to the empirical distribution of Pxn . But since
xn ∈ Tδ(x), Pxn is close to the true PMF of X [i.e. P ], which is why this expectation is close to the
true expectation E[g(X)]. This property will be important for the rate distortion theorem where g will be
replaced by the distortion function. In the homework, you will find cases where this does not hold for weak
typicality.

2.3 Conditional Typicality

Definition 6. Fix xn. The conditional δ-typical set is

Tδ(Y |xn) = {yn : (xn, yn) ∈ Tδ(X,Y )} (7)

In other words, it is the set of all sequences yn such that the pair (xn, yn) is jointly δ-typical.

Observe that if xn ̸∈ Tδ(X), then Tδ(Y |xn) = ∅, because for a sequence (xn, yn) to be jointly typical, each
individual sequence must be typical with respect to PX and PY , respectively (shown in homework).
In the homework, we will show that, assuming xn ∈ Tδ′(X),

(1− δ)2n[H(Y |X)−ϵ(δ)] ≤ |Tδ(Y |xn)| ≤ 2n[H(Y |X)+ϵ(δ)]

for all 0 < δ′ < δ and n sufficiently large, where ϵ(δ) = δ ·H(Y |X).
In short, for a sequence xn that is typical, the number of sequences yn that are jointly typical with xn is
approximately 2nH(Y |X). A starting point of the proof will be the “Conditional Typicality Lemma.”

Lemma 7 (Conditional Typicality Lemma). For 0 < δ′ < δ, xn ∈ Tδ′(X) and Y n ∼ P (yn|xn) =
n∏

i=1

PY |X(yi|xi), then

lim
n→∞

P (Y n ∈ Tδ(Y |xn)) = 1 (8)

In other words, we fix an individual sequence xn, and generate the sequence Y n stochastically and indepen-
dently according to the distribution conditioned on xn, i.e. we generate Yi ∼ PY |X=xi

, [according to the joint
probability mass function PX,Y , which gives rise to the conditional probability mass function PY |X ]. One
can think of this in communication terminology: the sequence Y n is generated is by taking the individual
sequence xn and passing it through the memoryless channel P (Y |X). The probability that the sequence Y n

thus generated is conditionally typical approaches 1 as n becomes large.
To prove the conditional typicality lemma, we will employ the fact [to be proved earlier in the homework]

that P (Tδ(P ))
n→∞→ 1. Fix some a ∈ X , and consider the subsequence of all components xi in xn that
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are equal to a. Consider the subsequence of yi’s corresponding to the same indices. This subsequence is
generated IID from the PMF PY |X=a. We will apply the aforementioned result separately to each such
subsequence corresponding to a symbol in a ∈ X .
To prove the bounds on the size of |Tδ(Y |xn)|, we will take a similar approach: we will use Equation (3)
[which will also be proved earlier in the homework] and apply it to each subsequence associated with a
symbol a ∈ X .
We can interpret the Conditional Typicality Lemma qualitatively with the help of the following pictures:

Xn
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B
B
B
B
B
B
BBM

size ≈ 2nH(X)

xn

Tδ′(X)

Yn

B
B
B
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B
B
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B
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size ≈ 2nH(Y )

- Tδ(Y |xn)
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�
�
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�
�
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�
�
�
�
���

size ≈ 2nH(Y |X)

Tδ(Y )

Figure 1: Illustration of the relationships between strongly δ-typical and conditionally δ-typical sets

The dashed line denotes that, given channel input xn, the channel output will fall within the dark gray set
Tδ(Y |xn) with high probability. Tδ(Y |xn) can be thought of the “noise ball” around the particular channel
input sequence xn. Recall that in lecture 11, we used this to give intuition for the channel coding converse.

Lemma 8 (Joint Typicality Lemma). ∀ 0 < δ′ < δ, if Ỹi IID ∼ Y , then for all n sufficiently large and
xn ∈ Tδ′(X),

2−n[I(X;Y )+ϵ̃(δ)] ≤ P (Ỹ n ∈ Tδ(Y |xn)) ≤ 2−n[I(X;Y )−ϵ̃(δ)] (9)

where ϵ̃(δ) → 0 as δ → 0.

The proof of the Joint Typicality Lemma will also be a homework problem. Intuitively speaking, since the
sequence Ỹ n is generated IID with respect to Y , on an exponential scale it is roughly uniformly distributed
over the set Tδ(Y ). Thus, the probability that the sequence falls within Tδ(Y |xn) for some particular xn is,
on an exponential scale, roughly the ratio of the size of this set to the size of Tδ(Y ), since Tδ(Y |xn) ⊆ Tδ(Y ).
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Again, refer to Figure 1 for a visual aid. So, P (Ỹ n ∈ Tδ(Y |Xn)) ≈ 2nH(Y |X)

2nH(Y )
= 2−nI(X;Y ). So, the

probability that a randomly generated sequence Ỹ n “looks” jointly typical with a particular sequence xn is
exponentially unlikely.

In the next lecture, we will see why these notions are significant in the context of lossy compression. We will
use them to prove the main achievability result of lossy compression.

3 Recap of the Strongly δ-Typical Set

An informal recap of previously discussed terms:

1. Tδ(X) = set of sequences xn whose empirical distribution is close to pmf of X

2. Tδ(X,Y ) = set of pairs of sequences (xn, yn) whose joint empirical distribution is close to the joint
pmf of (X,Y )

3. Tδ(Y |xn) = set of sequences yn whose joint empirical distribution with xn is close to joint pmf of
(X,Y )

And respective sizes of these sets:

1. |Tδ(X)| ≈ 2nH(X)

2. |Tδ(X,Y )| ≈ 2nH(X,Y )

3. |Tδ(Y |xn)| ≈ 2nH(Y |X) for xn ∈ Tδ(X)

Now we can look at the probability of randomly generated, iid sequences being in each of these sets. If we
generate Xi iid ∼ X, then the random sequence Xn is typical by the Law of Large Numbers,

Pr (Xn ∈ Tδ(X)) ≈ 1. (10)

If a specific, δ-typical xn is fed into a memoryless channel characterized by PY |X to generate the stochastic
channel output sequence Y n, ie. xn −→ P (Y |X) −→ Y n, then Y n is in the conditional δ-typical set
Tδ(Y |xn),

Pr (Y n ∈ Tδ(Y |xn)) ≈ 1,∀xn ∈ Tδ(X). (11)

Joint-Typicality Lemma: Finally we saw that for Ỹi iid ∼ Y , the probability of the sequence Ỹ n falling
into the conditional δ-typical set given the input xn is exponentially unlikely. That is, it is unlikely that
any iid randomly generated sequence will look like the response of a channel to a particular input xn. The
probability can be described as a function of the mutual information between X and Y ,

Pr
(
Ỹ n ∈ Tδ(Y |xn)

)
≈ 2−nI(X;Y ). (12)

By (10), Ỹ n ∈ Tδ(Y ), so then the probability that it falls into the smaller subset Tδ(Y |xn) of that region is
small. Furthermore, we can express this approximation as a ratio:

2−nI(X;Y ) =
2nH(Y |X)

2nH(Y )
≈ |Tδ(Y |xn)|

|Tδ(Y )|
(13)

Recall from Lecture 10, that given X̃i iid ∼ X and Ỹi iid ∼ Y generated independently, the probability they
look jointly typical according to the notion of weak typicality is,

Pr
(
(X̃i

n
, Ỹi

n
) ∈ A(n)

e (X,Y )
)
≈ 2−nI(X;Y ) (14)
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This result is also true for the notion strong typicality and follows from Sanov’s theorem. The Method of
Types tells us that the probability that for (X̃i

n
, Ỹi

n
) generated iid ∼ QX,Y looks like the joint empirical

distribution P is 2−nD(P ||Q) (in this case, P is the joint distribution and Q is the product of the marginals).
Thus:

Pr
(
(X̃i

n
, Ỹi

n
) ∈ Tδ(X,Y )

)
≈ 2−nD(PXY ||PX×PY ) (15)

= 2−nI(X;Y ) (16)

An alternative way to get this result without using Sanov’s:

Pr
(
(X̃i

n
, Ỹi

n
) ∈ Tδ(X,Y )

)
≈ Pr

(
X̃i

n ∈ Tδ(X)
)
× Pr

(
Ỹi

n ∈ Tδ(Y |X̃n) | X̃n ∈ Tδ(X)
)

(17)

≈ 1× 2−nI(X;Y ) (18)

= 2−nI(X;Y ) (19)

The idea is that the first requirement Pr(X̃i
n ∈ Tδ(X)) will cost nothing, being about 1 according to (10).

4 δ-Typicality in the Compression Setting

In the compression setting, let U be a random variable according to the source distribution and let V be the
reconstruction random variable that is associated with mutual information minimization that characterizes
the rate distortion function R(D). Suppose (U, V ) are generated according to their a joint pmf PU,V . In this
section, we apply the results we got from the previous section.

Figure 2: Conditionally typical set Tdelta(V |un)

In Figure 2, Un denotes the set of all possible source sequences of length n and Vn denotes the set of
all possible reconstructions. For a particular source sequence un ∈ Tδ(U) from the set of typical source
sequences, the conditionally typical set Tδ(V |un) is the set of all typical sequences vn that are jointly typical
with un. According to the Joint Typicality Lemma (3), if we generate an iid sequence Vi ∼ V , then the
probability that it belongs to the conditional typical set is,

Pr(V n ∈ Tδ(V |un)) ≈ 2−nI(U ;V ) (20)

which is exponentially small. However, if we independently generate 2nI(U ;V ) random V n’s, at least one will
fall in Tδ(V |un) with high probability.

Note: If (un, vn) ∈ Tδ(U, V ), then

1

n

n∑
i1

d(ui, vi) ≈ E[d(U, V )]. (21)
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We will use this argument to guarantee that for any source sequence you care about, there is some sequence
in a randomly generated codebook of the appropriate size that is jointly typical with it. Therefore the
distortion between the source and reconstruction sequences will be roughly the distortion between the generic
pair (U, V ).

5 Lossy Compression and R(D)

Figure 3: Scheme

A scheme is characterized by: (n,M,Encoder,Decoder) where

• n is the length of the source sequence

• M = 2m is the size of the index set or the number of bits you will use to represent a source n-tuple.

Communicating m bits is equivalent to 2m possible messages so using m bits to represent the data is
equivalent to conveying an index set of M = 2m indices. We can think of the encoder as having an output
J ∈ {1, 2, . . . ,M}. Then the rate of the scheme is

Rate =
logM

n

bits

source sequence
. (22)

We use the notation

d(un, vn) =
1

n

n∑
i=1

d(ui, vi). (23)

Note 1. The decoder maps an index to a reconstruction. Therefore, specifying a decoder is equivalent to
specifying a codebook cn = {vn(1), . . . , vn(M)}.

Note 2. Without loss of optimality, we can assume

d(Un, V n(J)) = min
vn∈cn

d(Un, vn). (24)

i.e., the encoder is the optimal encoder for the given codebook. The encoder will output the index in the
codebook that is closest under the relevant distortion criteria to the source sequence. That will lead to the
smallest distortion with an optimal expected per-symbol distortion of

expected dist(cn) = E
[
min
vn∈cn

d(Un, vn)

]
. (25)

6 Rate Distortion Theory

Reviewing the key definitions for rate distortion theory:

• (R,D) is achievable if ∀ϵ ∃n, cn such that |cn| ≤ 2n(R+ϵ) and expected dist(cn) ≤ D + ϵ.
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• R(D) = inf{R′ : (R′, D) is achievable}

• Theorem: R(D) = min
E[d(U,V )]≤D

I(U ;V ) = R(I)(D)

The above theorem is equivalent to:

• Converse: R(D) ≥ R(I)(D)

• Direct: R(D) ≤ R(I)(D)

The Direct Part of the the theorem can then be reframed as follows:

If U, V are such that E[d(U, V )] ≤ D and R > I(U ;V ), then (R,D) is achievable. (26)

If U ,V is a feasible set for minimization, then any value for I(U ;V ) in the feasible set (defined as E[d(U, V )] ≤
D) is achievable and any rate R > I(U ;V ) is such that (R,D) is achievable. Therefore the minimum of
I(U ;V ) in the feasible set is achievable and that minimizing pair (U, V ) can be chosen.

6.1 Sketch of the Proof for the Direct Part

A rigorous proof of the following is in the class notes from 2016 on page 62.

The setup is as follows:

• Fix U, V such that E[d(U, V )] ≤ D

• Fix R > I(U ;V )

• Take M = 2nR, where M = |Cn| and is therefore ≫ 2nI(U ;V )

• Generate a random codebook Cn = {V n(1), V n(2), ..., V n(M)}, with V n(i) generated iid ∼ V

• Fix un for any un ∈ Tδ(U)

Recall that for a δ-typical un the probability that V n is jointly typical is given by the Jointly Typical Lemma
(Equation 12),

Pr ((un, V n(j)) ∈ Tδ(U, V )) ≈ 2−nI(U ;V ) ∀ 1 ≤ j ≤ M. (27)

Since there are M = 2nR ≫ 2nI(U ;V ) j’s, then with high probability one of the j’s is jointly typical with un.
This leads to the following results with high probability:

Pr ((un, V n(j)) ∈ Tδ(U, V ) for some 1 ≤ j ≤ M) ≈ 1 (28)

⇒Pr (d(un, V n(j)) ≤ D for some 1 ≤ j ≤ M) ≈ 1 (29)

⇒Pr

(
min

V n∈Cn

d(un, V n) ≤ D

)
≈ 1 (30)

This is all true conditioned on a fixed un ∈ Tδ(U), but in all likelihood Un ∈ Tδ(U). This leads to the
conclusions that:

Pr

(
min

vn∈Cn

d(Un, vn) ≤ D

)
≈ 1 (31)

E[ min
vn∈Cn

d(Un, vn)] ≤ D (32)
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Therefore, we can extract one particular codebook, ie. ∃cn such that:

|cn| = M = 2nR (33)

expected dist(cn) = E[ min
vn∈Cn

d(Un, vn)] ≤ D (34)

⇒ (R,D) is achievable (35)

In conclusion, if we generate Cn randomly and generate > 2nI(U ;V ) V n reconstructions randomly, then with
high probability one of the reconstructions will be jointly typical with the input and hence consistent with
the distortion criterion.

7 Recap

A quick recap of our current setting.

U1 . . . Un, iid ∼ U → Encoder
J∈{1...M}−−−−−−−→ Decoder → V1 . . . Vn

Rate is
log M

n

bits

symbol

Distortion is d(Un, V n) =
1

n

n∑
i=1

d(Ui, Vi)

We say a pair (R,D) is achievable if for any ϵ > 0, there exists a scheme (encoder, decoder pair) with rate
less than or equal to R+ ϵ, and expected distortion E[d(Un, V n)] ≤ D + ϵ. In this setting, we define

R(D) = inf {R′ : (R′, D) is achievable}

R(D) can be thought of as the minimum number of bits per symbol needed to achieve expected distortion
D. From this, we have presented our main theorem for this section before, which states

R(D) = min
E[d(U,V )]≤D

I(U ;V )
∆
= R(I)(D)

In order to prove this main theorem, we split it into the two following parts, which together are equivalent
to the theorem.

Direct part: R(D) ≤ R(I)(D) (Proven already)

Converse part: R(D) ≥ R(I)(D) (Remains to prove)

We will recap the idea for the proof of the direct part (sometimes called achievability). First, we generate a
codebook {V n(1), . . . , V n(M)} iid ∼ V . Then, for a given 1 ≤ i ≤ m:

P((Un, V n(i)) is jointly typical) ≈ 2−nI(U ;V ) (36)

We have proved that a direct implication from (1) is:

P((Un, V n(i)) is jointly typical for some 1 ≤ i ≤ M) ≈ 1, provided M = 2nR, for R > I(U ;V )

It is then clear that in order to cover the typical set Tδ(U), we need a number of points greater than or equal

to 2nH(U)

2nH(U|V ) = 2nI(U ;V ).
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Figure 4: Typical sets and codewords - intuition. To cover Tδ(U) with conditionally typical balls, we need roughly

Tδ(U)/Tδ(U |V n) ≈ 2nI(U ;V ) reconstruction sequences.

8 Proof of the converse part

Fix a scheme satisfying
E [d(Un, V n)] ≤ D

Then the entropy of the reconstruction under the scheme is no more than the log-size of the codebook, i.e.

H(V n) ≤ logM

since the reconstruction takes values in a set of size at most M . Hence

logM ≥ H(V n)

≥ H(V n)−H(V n|Un)

= I(Un;V n)

= H(Un)−H(Un|V n)

=

n∑
i=1

H(Ui)−H(Ui|U i−1, V n)

≥
n∑

i=1

H(Ui)−H(Ui|Vi) because conditioning reduces entropy

=

n∑
i=1

I(Ui;Vi)

≥
n∑

i=1

R(I) (E [d(Ui, Vi)]) from the definition of R(I)(D)

≥ nR(I)

(
1

n

n∑
i=1

E [d(Ui, Vi)]︸ ︷︷ ︸
E[d(Un,V n)]≤D

)
from the convexity of R(I)(D) (homework 5)

≥ nR(I)(D) from the monotonicity of R(I)(·)
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thus

rate =
logM

n
≥ R(I)(D)

which finishes the proof of the converse part

R(D) ≥ R(I)(D)
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