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1 Communication and Channel Capacity

We want to communicate bits from some source to some target. We use the following model to represent how
to transmit this data across a channel that can have noise that corrupts the data. In order to ensure good
transmission quality, we will try to encode and decode the data in such a way that reduces the probability
of error in the received signal.

m bits: Bm
Transmitter
/ Encoder

Noisy
Channel
PY n|Xn

Receiver
/ Decoder m Bits: B̂m

Xn Y n

We have Bm = (B1, B2, . . . , Bm), and B̂m = (B̂1, B̂2, . . . , B̂m). Notice that m is not necessarily equal to n.

Here, let B1, B2, ..., Bm be i.i.d. bits ∼ Ber( 1
2 ). The conditional distribution of the signal which the noisy

channel emits given the transmitted signal, PY n|Xn(yn|xn), is given. In order to transmit Bm across the
channel, we first encode these bits into a new vector, X1, X2, ..., Xn. This is the information that is sent
across the noisy channel. Then, the receiver will receive the transformed vector, Y1, Y2, ..., Yn. The decoder’s
job is now to to transform the received bits into a vector B̂m that closely resembles Bm.

To work with this problem, we first need to make some definitions.

Definition 1. Scheme:

Scheme , (m,n, encoder, decoder) (1)

A scheme is first characterized by the number of bits we are trying to send (m) and the number of channel
uses (n). Once we have picked these, we pick an encoder, that changes the (m) bits into an encoded (n)-
tuple. Then, we pick the decoder that converts encoded (n)-tuple into, hopefully, the same (m) bits that
were sent.

Definition 2. Rate:

rate ,
m

n

bits

channel use
(2)

The higher the rate, the better we are at communicating our information.

Definition 3. Probability of Error:

P (n)
e , P (B̂m 6= Bm) (3)

Definition 4. Achievable Rate: R is an achievable rate if there exists a sequence of schemes {Schemen}n≥1
with rate equal to or greater than R that transmits with vanishing probability of error, such that

P
(n)
e,Schemen

n→∞−−−−→ 0 (4)

Note that m has to be scaling and growing with n as it goes to infinity.
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With the notion of achievable rate, we can talk about channel capacity.

Definition 5. Channel Capacity: this is the maximal rate of reliable communication:

C , sup{R|R is achievable} (5)

All these definitions are valid for any kind of channel. However, to get started, we choose to work with
simpler channels. This brings us to the notion of a memoryless channel, which is a surprisingly common
assumption to make in communication.

Definition 6. Memoryless Channel: The conditional distribution of the output given the input is the product
of the same conditional distribution of an output symbol given the input symbol, for every bit sent or received.
In other words,

PY n|Xn(yn|xn) ,
n∏

i=1

PY |X(yi|xi) (6)

A memoryless channel corresponds to n independent uses of a channel that transmits a single symbol.

Now let’s consider the “single-letter” channel.

X ∼ PX(x)

Noisy
Channel
PY |X(y|x)

Y

Given the input distribution on X and the conditional distribution of Y given X, we can compute the
joint distribution and quantities like the mutual information between the input and the output. In fact,
since we can modify PX , we can find a way to maximize the mutual information between the input and the
output. Intuitively, maximizing the mutual information I(X;Y ) minimizes the error in the channel because it
increases the amount by which the input informs the output. Consider then the following quantity, obtained
by taking a maximum over the probability distributions of X:

C(I) , max
PX

I(X;Y ) (7)

Theorem 7. The maximum mutual information is the channel capacity

C = C(I) (8)

This is profound because it relates how much we can physically transmit over a channel reliably to the
mutual information between input and output. This makes the complicated problem of finding channel
capacity a clean optimization problem which involves finding the input distribution that maximizes the
mutual information between the input and the output. We will see the proof in the coming lectures. This
theorem is important because C is challenging to optimize over, whereas C(I) is a tractable optimization
problem.

1.1 Examples

Example I. Channel capacity of a Binary Symmetric Channel (BSC).

Define alphabets X = Y = {0, 1}. A BSC is defined by the PMF:

PY |X(y|x) =

{
p y 6= x

1− p y = x.
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This is equivalent to a channel matrix (
1− p p
p 1− p

)
The rows of the matrix correspond to input symbols 0 and 1, while the columns correspond to output symbols
0 and 1.

And the graph representation

This can also be expressed in the form of additive noise.

Y = X ⊕2 Z, where Z ∼ Ber(p) and Z is independent of X.

To determine the channel capacity of a BSC, by the theorem we must maximize the mutual informa-
tion.

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−H(X ⊕2 Z|X)

Once we condition on X, the uncertainty in X ⊕2 Z is same as the uncertainty in Z. Formally, we can
simplify the second term (can also be shown by separately considering cases X = 0 and X = 1):

I(X;Y ) = H(Y )−H(Z)

= H(Y )− h2(p) ≤ 1− h2(p).

where h2(p) is the binary entropy function. Taking X ∼ Ber( 1
2 ) achieves equality: I(X;Y ) = 1 − h2(p)

(note: by symmetry X ∼ Ber( 1
2 ) implies Y ∼ Ber( 1

2 )). Thus, C = 1− h2(p).

Example II. Channel capacity of a Binary Erasure Channel (BEC).

Define alphabets X = {0, 1} and Y = {0, 1, e} where e stands for erasure. Any input symbol Xi has a
probability 1−α of being retained in the output sequence and a probability α of being erased. Schematically,
we have:
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Examining the mutual information, we have that

I(X;Y ) = H(X)−H(X|Y )

= H(X)− [H(X|Y = e)P (Y = e) +H(X|Y = 0)P (Y = 0) +H(X|Y = 1)P (Y = 1)]

= H(X)− [H(X) · α+ 0 · P (Y = 0) + 0 · P (Y = 1)]

= (1− α)H(X)

Because the entropy of a binary variable can be no larger than 1:

(1− α)H(X) ≤ 1− α

Equality is achieved when H(X) = 1, that is X ∼ Ber( 1
2 ). Thus, the capacity of the BEC is C = 1−α.

Note that if we knew exactly which positions were going to be erased, we could communicate at this rate by
sending the input bits at exactly those positions (since the expected fraction of erasures is 1− α). The fact
that C = 1−α indicates that we can achieve this rate even when we do not know which positions are going
to be erased.
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