
Polar codes decoding
EE 276 (Information Theory), Winter 2020-21

Stanford University



Acknowledgement

• Parts of this are based on:
• Slides from Prof. Pilanci’s lecture:

• https://web.stanford.edu/class/ee276/files/polarcodes_EE276_2021_annotated.pdf
• Tutorial by Erdal Arıkan himself:

• https://simons.berkeley.edu/sites/default/files/docs/2689/slidesarikan.pdf
• EE388 Modern Coding Course notes at Stanford

• https://web.stanford.edu/class/ee388/HOMEWORK2018/lecture-9-10-11.pdf
• Definitely recommended course if you want to learn all about the recent advances in 

coding theory including LDPC codes, polar codes, and several cool applications

https://web.stanford.edu/class/ee276/files/polarcodes_EE276_2021_annotated.pdf
https://simons.berkeley.edu/sites/default/files/docs/2689/slidesarikan.pdf
https://web.stanford.edu/class/ee388/HOMEWORK2018/lecture-9-10-11.pdf


Polar codes

• Polar codes involve a recursive circuit construction which forms an invertible map from 
the input bits (U1,…,UN) to the channel input bits (X1,…,XN)

• The actual channels from (X1,…,XN) to channel outputs (Y1,…,YN) are independent of each 
other with fixed capacity, say C

• But the new “bit-channels” from Ui to (YN,Ui-1) (assuming previous bits already decoded) 
polarize as N grows larger
• This means that for large N, NC channels have capacity 1 while N(1-C) channels have capacity 0
• The specific values of i that give good/bad bit-channels depends on the original channel type and 

parameters (e.g., BEC, BSC, etc.)
• What does this achieve? Channels with capacity 0 or 1 are trivial to work with! 

• Capacity 0 means no information can be transmitted, so we simply freeze the bits
• Capacity 1 means noiseless communication, so we can just send the message bits over these 

channels
• Thus, we can freeze N(1-C) bits and use NC bits for the actual message bits

• Achieved rate is NC message bits/N channel transmission = C (in the limit)



Polar codes successive cancellation decoding

• As you saw in class, polar codes can be decoded using successive 
cancellation decoding
• Here we’ll try to understand the procedure in slightly more detail
• We will focus on BEC for ease of explanation 

• For other channels, we work with log likelihood ratios instead of bits at the 
intermediate nodes, but the general principles are still the same

• This should hopefully help you with the homework question and inspire 
you to read more on polar code!
• It’s important to understand that polar codes were the first deterministic 

and efficient schemes for achieving capacity – phenomena such as 
polarization also occur for random transforms but they’re not efficient



SC decoding: basic algorithm

• For input bits UN (some of which are frozen) and channel output YN

• We first decode U1 based on YN assuming that (U2,…,UN) are random
• Then we decode U2 based on YN,U1 assuming that (U3,…,UN) are random
• …
• Finally we decode UN based on YN,U1,...,UN-1

• At any stage if you get an erasure of Ui, you abort and declare failure
• Where do the frozen bits come in the picture? When you fail to 

decode a frozen bit Ui, you don’t abort – instead, you set Ui to the 
known frozen value
• We still go through the process of the decoding Ui even though it is frozen –

this allows us to compute a bunch of intermediate values to be used later



SC decoding: suboptimality and complexity

• Why assume (Ui+1,…,UN) are random when decoding Ui, even though of some these are 
frozen and hence known?
• We might declare a failure at Ui which possibly could be decoded if we had used all the 

information about the upcoming frozen bits
• SC decoding is not optimal

• SC decoding can be implemented efficiently, whereas we don’t know if the optimal 
maximum likelihood decoding is efficient
• SC decoding uses the recursive structure of polar codes: O(NlogN) complexity
• And it still achieves capacity!

• For short block lengths, we can do better, e.g., using list decoding and CRCs (see work by 
Tal and Vardy at https://ieeexplore.ieee.org/document/7055304). These are one of the 
best codes at short block lengths and are part of 5G standards.

• Here we won’t see how the NlogN complexity can be achieved
• The naive algorithm is N2 (still polynomial time)
• Getting to NlogN uses the recursive structure, similar to how FFT works



2x2 decoding (W = BEC, ? = erasure)

U1

U2

Y1

Y2

Decoding U1:
?, if Y1 or Y2 is ?
Y1⨁Y2, otherwise

U1

U2

Y1

Y2

Decoding U2:
?, if Y1 and Y2 are ?
Y2, if Y2 not erased
Y1⨁U1, if Y1 not erased

Decoding for larger N consists of multiple 2x2 decoding steps



4x4 example

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

First, we attempt to decode U1 by decoding the intermediate 2x2 blocks from right to left



4x4 example: decoding U1

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0



4x4 example: decoding U1

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?



4x4 example: decoding U1

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?



4x4 example: decoding U1

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?



4x4 example: decoding U1

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?



4x4 example: decoding U1

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?

?

So we failed to decode U1 L - but it’s frozen so we just set it to 0!



4x4 example: decoding U1

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?

0

So we failed to decode U1 L - but it’s frozen so we just set it to 0!



4x4 example: decoding U2

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?

0



4x4 example: decoding U2

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?

0

?

Even knowing U1, we can’t decode U2 since we have two erasures.
But U2 is also frozen, so we keep moving on.



4x4 example: decoding U2

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?

0

0

Even knowing U1, we can’t decode U2 since we have two erasures.
But U2 is also frozen, so we keep moving on.



4x4 example: U1 and U2 decoded

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?

0

0



4x4 example

• Now that U1 and U2 are decoded, the upcoming bits will be decoded 
assuming these are known – so we update the rest of circuit using 
left-to-right circuit evaluations as shown next
• In general, you will have an alternation of
• Decoding based on previously decoded bits
• Update intermediate LLR (log-likelihood ratios)/bit values based on currently 

decoded bits



4x4 example: update intermediate bits

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

?

?

0

0



4x4 example: update intermediate bits

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0



4x4 example: decoding U3

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0



4x4 example: decoding U3

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0

0



4x4 example: decoding U3

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0

0



4x4 example: decoding U3

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0

0

0



4x4 example: decoding U3

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0

0

0



4x4 example: decoding U3

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0

0

0

0

U3 decoded successfully!



4x4 example: decoding U4

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0

0

0

0



4x4 example: decoding U4

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0

0

0

0

0

U4 decoded successfully!



4x4 example

Frozen = 0

Frozen = 0

Data

Data

0

?

?

0

0

0

0

0

0

0

0

0

Decoding successful!



We’re almost done

• For a bigger 8x8 example, see another set of slides created in 2019
• https://web.stanford.edu/class/ee276/files/SC_decoding_8x8.pdf

• BEC is very special because every intermediate value is either
• An erasure (?): i.e., you have no idea about its value
• Or 0/1: i.e., you know the value exactly 

• But for other channels such as BSC/BI-AWGN, you have some uncertainty
• Expressed in terms of log-likelihood ratios (LLRs)
• The intermediate node values are LLRs given the output and the currently decoded 

bits
• After you compute the LLR of the input bit, you perform a hard decoding into 0 or 1 

based on the value of the LLR

https://web.stanford.edu/class/ee276/files/SC_decoding_8x8.pdf


Thank You!


