Polar codes decoding

EE 276 (Information Theory), Winter 2020-21
Stanford University

Acknowledgement

- Parts of this are based on:
- Slides from Prof. Pilanci's lecture:
- https://web.stanford.edu/class/ee276/files/polarcodes EE276 2021 annotated.pdf
- Tutorial by Erdal Arıkan himself:
- https://simons.berkeley.edu/sites/default/files/docs/2689/slidesarikan.pdf
- EE388 Modern Coding Course notes at Stanford
- https://web.stanford.edu/class/ee388/HOMEWORK2018/lecture-9-10-11.pdf
- Definitely recommended course if you want to learn all about the recent advances in coding theory including LDPC codes, polar codes, and several cool applications

Polar codes

- Polar codes involve a recursive circuit construction which forms an invertible map from the input bits $\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{N}\right)$ to the channel input bits $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{N}\right)$
- The actual channels from $\left(X_{1}, \ldots, X_{N}\right)$ to channel outputs $\left(Y_{1}, \ldots, Y_{N}\right)$ are independent of each other with fixed capacity, say C
- But the new "bit-channels" from U_{i} to $\left(\mathrm{Y}^{\mathrm{N}}, \mathrm{U}^{\mathrm{i}-1}\right)$ (assuming previous bits already decoded) polarize as N grows larger
- This means that for large N, NC channels have capacity 1 while $\mathrm{N}(1-\mathrm{C})$ channels have capacity 0
- The specific values of i that give good/bad bit-channels depends on the original channel type and parameters (e.g., BEC, BSC, etc.)
- What does this achieve? Channels with capacity 0 or 1 are trivial to work with!
- Capacity 0 means no information can be transmitted, so we simply freeze the bits
- Capacity 1 means noiseless communication, so we can just send the message bits over these channels
- Thus, we can freeze N(1-C) bits and use NC bits for the actual message bits
- Achieved rate is NC message bits/ N channel transmission = C (in the limit)

Polar codes successive cancellation decoding

- As you saw in class, polar codes can be decoded using successive cancellation decoding
- Here we'll try to understand the procedure in slightly more detail
- We will focus on BEC for ease of explanation
- For other channels, we work with log likelihood ratios instead of bits at the intermediate nodes, but the general principles are still the same
- This should hopefully help you with the homework question and inspire you to read more on polar code!
- It's important to understand that polar codes were the first deterministic and efficient schemes for achieving capacity - phenomena such as polarization also occur for random transforms but they're not efficient

SC decoding: basic algorithm

- For input bits U^{N} (some of which are frozen) and channel output Y^{N}
- We first decode U_{1} based on Y^{N} assuming that $\left(\mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{N}}\right)$ are random
- Then we decode U_{2} based on Y^{N}, U_{1} assuming that $\left(U_{3}, \ldots, U_{N}\right)$ are random
- ...
- Finally we decode U_{N} based on $\mathrm{Y}^{\mathrm{N}}, \mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{N}-1}$
- At any stage if you get an erasure of U_{i}, you abort and declare failure
- Where do the frozen bits come in the picture? When you fail to decode a frozen bit U_{i}, you don't abort - instead, you set U_{i} to the known frozen value
- We still go through the process of the decoding U_{i} even though it is frozen this allows us to compute a bunch of intermediate values to be used later

SC decoding: suboptimality and complexity

- Why assume $\left(\mathrm{U}_{i+1}, \ldots, \mathrm{U}_{N}\right)$ are random when decoding U_{i}, even though of some these are frozen and hence known?
- We might declare a failure at U_{i} which possibly could be decoded if we had used all the information about the upcoming frozen bits
- SC decoding is not optimal
- SC decoding can be implemented efficiently, whereas we don't know if the optimal maximum likelihood decoding is efficient
- SC decoding uses the recursive structure of polar codes: O(NlogN) complexity
- And it still achieves capacity!
- For short block lengths, we can do better, e.g., using list decoding and CRCs (see work by Tal and Vardy at https://ieeexplore.ieee.org/document/7055304). These are one of the best codes at short block lengths and are part of 5G standards.
- Here we won't see how the NlogN complexity can be achieved
- The naive algorithm is N^{2} (still polynomial time)
- Getting to NogN uses the recursive structure, similar to how FFT works

2×2 decoding ($W=B E C, ?=$ erasure $)$


```
Decoding U1 :
?, if }\mp@subsup{Y}{1}{}\mathrm{ or }\mp@subsup{Y}{2}{}\mathrm{ is ?
Y
```

Decoding U_{2} :
?, if Y_{1} and Y_{2} are ?
Y_{2}, \quad if Y_{2} not erased
$\mathrm{Y}_{1} \oplus \mathrm{U}_{1}$, if Y_{1} not erased

Decoding for larger N consists of multiple 2×2 decoding steps

4x4 example

First, we attempt to decode U_{1} by decoding the intermediate 2×2 blocks from right to left
4×4 example: decoding U_{1}

So we failed to decode $U_{1} *$ - but it's frozen so we just set it to 0 !

4×4 example: decoding U_{1}

So we failed to decode $U_{1} \otimes$ - but it's frozen so we just set it to 0 !
$4 x 4$ example: decoding U_{2}

4×4 example: decoding U_{2}

Even knowing U_{1}, we can't decode U_{2} since we have two erasures. But U_{2} is also frozen, so we keep moving on.

4×4 example: decoding U_{2}

Even knowing U_{1}, we can't decode U_{2} since we have two erasures. But U_{2} is also frozen, so we keep moving on.
4×4 example: U_{1} and U_{2} decoded

4×4 example

- Now that U_{1} and U_{2} are decoded, the upcoming bits will be decoded assuming these are known - so we update the rest of circuit using left-to-right circuit evaluations as shown next
- In general, you will have an alternation of
- Decoding based on previously decoded bits
- Update intermediate LLR (log-likelihood ratios)/bit values based on currently decoded bits
4×4 example: update intermediate bits

4×4 example: update intermediate bits

4×4 example: decoding U_{3}

U_{3} decoded successfully!
4×4 example: decoding U_{4}

4×4 example: decoding U_{4}

U_{4} decoded successfully!

4×4 example

Decoding successful!

We're almost done

- For a bigger 8×8 example, see another set of slides created in 2019
- https://web.stanford.edu/class/ee276/files/SC decoding_8x8.pdf
- BEC is very special because every intermediate value is either
- An erasure (?): i.e., you have no idea about its value
- Or 0/1: i.e., you know the value exactly
- But for other channels such as BSC/BI-AWGN, you have some uncertainty
- Expressed in terms of log-likelihood ratios (LLRs)
- The intermediate node values are LLRs given the output and the currently decoded bits
- After you compute the LLR of the input bit, you perform a hard decoding into 0 or 1 based on the value of the LLR

Thank You!

