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Channel Capacity

I Channel capacity C is the maximal rate of reliable

communication

I Shannon’s Second Fundamental Theorem (from Lecture 17):

C = max
PX

I(X;Y )
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Capacity of the binary erasure channel (BEC)

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:

1 � ✏

1 � ✏

✏

✏

1

0

1

0

BSC(✏)

1 � ✏

1 � ✏

✏

✏

1

0

1

0

?

BEC(✏)

Capacity of the BEC with erasure probability ✏ is C = 1� ✏
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Channel Coding

rate: R = logM
n bits/channel use

probability of error Perror = Probability[Ĵ 6= J ]

I If R < C, then there exists a communication scheme with

rate � R and probability of error: Perror ! 0

I If R > C, then rate R is not achievable (Perror is large)

Shannon’s Second Theorem: Maximum rate of reliable

communication is C = maxPX I(X;Y )
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Channel Coding

rate: R = logM
n bits/channel use

probability of error Perror = Probability[Ĵ 6= J ]

I If R < C, then there exists a communication scheme with

rate � R and probability of error: Perror ! 0

I If R > C, then rate R is not achievable (Perror is large)

Shannon’s Second Theorem: Maximum rate of reliable
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Shannon’s Coding Method

I random codebook (from Lecture 9)

codeword 1 0 1 1 0 1 ...

codeword 2 1 1 0 1 0 ...

codeword 3 1 1 0 1 0 ...

codeword 4 0 0 0 0 1 ...

codeword 5 1 0 0 0 0 ...

codeword 6 0 1 0 0 1 ...

codeword 7 0 0 1 1 0 ...

codeword 8 1 0 0 0 1 ...

.

.

.

I not explicitly constructed

I shows the existence of good codes

I not computationally e�cient
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“Almost all codes are ”good” codes except for the the ones that we can think of..." 
Jack Wolfe



Today: Polar Codes

I Invented by Erdal Arikan in 2009

I First code with an explicit construction to provably achieve

the channel capacity

I E�cient encoding/decoding operations












































































(channel coding vs source coding)



Basic 2⇥ 2 transformation

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

X2

X1

U1, U2 2 {0, 1} two input bits

X1, X2 2 {0, 1} two output bits

X1 = U1 � U2 = U1 XOR U2

X2 = U2

alternatively

X1

X2

�
=


1 1
0 1

� 
U1

U2

�
modulo 2
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Basic 2⇥ 2 transformation

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

X2

X1

U1, U2 2 {0, 1} two input bits

X1, X2 2 {0, 1} two output bits

X1 = U1 � U2 = U1 XOR U2

X2 = U2

alternatively
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X2

�
=


1 1
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� 
U1

U2

�
modulo 2














































































Basic 2⇥ 2 transformation

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

X2

X1

U1, U2 2 {0, 1} two input bits

X1, X2 2 {0, 1} two output bits

X1 = U1 � U2 = U1 XOR U2

X2 = U2

alternatively

X1

X2

�
=


1 1
0 1

� 
U1

U2

�
modulo 2














































































Inverting the transform

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

X2

X1
+

U2

U1

2⇥ 2 transformation G2 :=


1 1
0 1

�

G2G2U =


1 1
0 1

� 
1 1
0 1

� 
U1

U2

�

=


1 1
0 1

� 
U1 � U2

U2

�
=


U1 � U2 � U2

U2

�
=


U1

U2

�














































































Inverting the transform

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

X2

X1
+

U2

U1

2⇥ 2 transformation G2 :=


1 1
0 1

�

G2G2U =


1 1
0 1

� 
1 1
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� 
U1

U2

�

=


1 1
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� 
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U2

�
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�
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Erasure channel

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:

1 � ✏

1 � ✏

✏

✏

1

0

1

0

BSC(✏)

1 � ✏

1 � ✏

✏

✏

1

0

1

0

?

BEC(✏)














































































Naively combining erasure channels

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:

1 � ✏

1 � ✏

✏

✏

1

0

1

0

BSC(✏)

1 � ✏

1 � ✏

✏

✏

1

0

1

0

?

BEC(✏)

I Repetition coding

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

U1

W

W

Y2

Y1
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Repetition code with rate 1/n

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:

1 � ✏

1 � ✏

✏

✏

1

0

1

0

BSC(✏)

1 � ✏

1 � ✏

✏

✏

1

0

1

0

?

BEC(✏)

I Repetition coding

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

U1

W

W

Y2

Y1
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Combining two erasure channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

Invertible transformation does not alter capacity or mutual

information: I(U ;Y ) = I(X;Y )
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Sequential decoding: Decode U1 and U2 one by one

First bit-channel W1 : U1 ! (Y1, Y2)

Polarization Encoding Decoding Construction Performance

The first bit-channel W1

W1 : U1 ! (Y1,Y2)

+

random U2

U1

W

W

Y2

Y1

C (W1) = I (U1;Y1,Y2)
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Second bit-channel W2 : U2 ! (Y1, Y2, U1)

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1












































































suppose a 'genie' provides this bit



Second bit-channel W2 : U2 ! (Y1, Y2, U1)

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1








































































suppose a 'genie' provides this bit

GPT4 prompt: generate an artistic depiction of a genie aided channel decoder



Second bit-channel W2 : U2 ! (Y1, Y2, U1)

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1
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Two di↵erent cases: W1 and W2

I W1: Decoding U1 when U2 is not available

U1 is erased when Y1 is erased or Y2 is erased

Failure probability = 1� (1� ✏)2 = 2✏� ✏
2

Polarization Encoding Decoding Construction Performance

The first bit-channel W1

W1 : U1 ! (Y1,Y2)

+

random U2

U1

W

W

Y2

Y1

C (W1) = I (U1;Y1,Y2)

I W2: Decoding U2 when U1 is available

U2 is erased when Y1 is erased and Y2 is erased

Failure probability = ✏
2

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1
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worse erasure channel

better erasure channel



Capacity is conserved

C(W1) + C(W2) = C(W ) + C(W ) = 2C(W )

C(W1)  C(W )  C(W2)

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1
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Extending the size
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Extending the size

Sequential decoding:

I Decode U1 from Y1, Y2, Y3, Y4

erased if (Y1 or Y2 erased) or (Y3 or Y4 erased)

I Decode U2 from Y1, Y2, Y3, Y4, U1

erased if (Y1 or Y2 is erased) and (Y3 or Y4 is erased)

I Decode U3 from Y1, Y2, Y3, Y4, U1, U2

erased if (Y1 and Y2 is erased) or (Y3 and Y4 is erased)

I Decode U4 from Y1, Y2, Y3, Y4, U1, U2, U3

erased if (Y1 and Y2 erased) and (Y3 and Y4 erased)














































































Extending the size

Sequential decoding:
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Extending the size

Sequential decoding:

I Decode U1 from Y1, Y2, Y3, Y4

erased if (Y1 or Y2 erased) or (Y3 or Y4 erased)

I Decode U2 from Y1, Y2, Y3, Y4, U1
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Recursive Calculation of Failure Probability

Sequential decoding:

I Decode U1

erased if (Y1 or Y2 erased) or (Y3 or Y4 erased)

failure probability= 2✏̂� ✏̂
2= 2(2✏� ✏

2)� (2✏� ✏
2)2

I Decode U2

erased if (Y1 or Y2 is erased) and (Y3 or Y4 is erased)

failure probability= ✏̂
2= (2✏� ✏

2)2

I Decode U3

erased if (Y1 and Y2 is erased) or (Y3 and Y4 is erased)

failure probability= 2✏̃� ✏̃
2= 2(✏2)� (✏2)2

I Decode U4

erased if (Y1 and Y2 erased) and (Y3 and Y4 erased)

failure probability= ✏̃
2= (✏2)2
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Recursive Calculation of Failure Probability

Sequential decoding:

I Decode U1

erased if (Y1 or Y2 erased) or (Y3 or Y4 erased)

failure probability= 2✏̂� ✏̂
2= 2(2✏� ✏

2)� (2✏� ✏
2)2

I Decode U2

erased if (Y1 or Y2 is erased) and (Y3 or Y4 is erased)

failure probability= ✏̂
2= (2✏� ✏

2)2

I Decode U3

erased if (Y1 and Y2 is erased) or (Y3 and Y4 is erased)

failure probability= 2✏̃� ✏̃
2= 2(✏2)� (✏2)2

I Decode U4

erased if (Y1 and Y2 erased) and (Y3 and Y4 erased)

failure probability= ✏̃
2= (✏2)2














































































Recursive Calculation of Failure Probability

Sequential decoding:
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Recursive Calculation of Failure Probability

Sequential decoding:

I Decode U1

erased if (Y1 or Y2 erased) or (Y3 or Y4 erased)
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2)� (2✏� ✏
2)2

I Decode U2

erased if (Y1 or Y2 is erased) and (Y3 or Y4 is erased)

failure probability= ✏̂
2= (2✏� ✏

2)2

I Decode U3

erased if (Y1 and Y2 is erased) or (Y3 and Y4 is erased)
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Polarization process

✏

2✏� ✏
2

✏
2

2(2✏� ✏
2)� (2✏� ✏

2)2

(2✏� ✏
2)2

2(✏2)� (✏2)2

(✏2)2
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Larger construction
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Larger construction

✏

2✏� ✏
2

✏
2

2(2✏� ✏
2)� (2✏� ✏

2)2

(2✏� ✏
2)2

2(✏2)� (✏2)2

(✏2)2












































































Question: What happens if we keep extending the size? 



Larger construction














































































Gambling and Martingales

I you can bet red or black

Probability[red] =
1
2 Probability[black] =

1
2

I a betting strategy that always wins (!)
1
: double the bet after

every loss

until you win:

bet $1 on black

bet $2 on black

bet $4 on black
.
.
.

1do not try this at home (or at the casino)
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Gambling and Martingales

until you win:

bet $1 on black

bet $2 on black

bet $4 on black

bet $8 on black

bet $16 on black

bet $32 on black
.
.
.

I Martingale betting strategy is a winning strategy only if you

have unbounded wealth

I It is not sustainable

Probability[ Loosing 6 in a row]=
1
26 ⇡ 0.016. This will

eventually happen if you repeat many times
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Martingale Processes

A martingale process is a sequence of random variables for

which the conditional expectation of the next value in the

sequence is equal to the present value, regardless of all prior

values.

I Martingales processes are important finance, e.g., in stock

trading, Black Scholes option pricing model (which won the

Nobel prize in economics)














































































Back to Polar Codes

Let et be random ±1 for t = 1, 2.... The polarization process is

wt+1 = wt + etwt(1� wt)












































































f

E

EL

fut
WI E H

WE 4 1



Sample paths














































































Martingales

wt+1 = wt + etwt(1� wt)

I the expectation of the next value is equal to the previous

value: E[wt+1|wt] = wt

I Martingale processes converge to a limiting distribution if they

are bounded

I polarization process wt+1 = wt + etwt(1� wt)

converges to w(1� w) = 0

w = 0 (erasure probability one) or

w = 1 (erasure probability zero)














































































Martingales

wt+1 = wt + etwt(1� wt)

I the expectation of the next value is equal to the previous

value: E[wt+1|wt] = wt

I Martingale processes converge to a limiting distribution if they

are bounded

I polarization process wt+1 = wt + etwt(1� wt)

converges to w(1� w) = 0

w = 0 (erasure probability one) or

w = 1 (erasure probability zero)
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Evolution of physical systems

wt+1|{z}
next position

= wt|{z}
current position

+ f(wt)| {z }
displacement














































































Gradient descent

wt+1|{z}
next parameters

= wt|{z}
current parameters

+ f(wt)| {z }
-gradient

wt+1 = wt + etwt(1� wt)

converges, i.e., wt+1 = wt when f(wt) = wt(1� wt) = 0























































wt+1 = wt + etwt(1� wt)

plot of f(w) = w(1� w)














































































Polarization theorem

I the process

wt+1 = wt + etwt(1� wt)

converges to either zero or one with probability one!

I implies that almost all channels are either perfect or

completely noisy














































































Non-convergent paths

I Down - Up - Down - Up ....

✏ & ✏
2 % 2✏2 � ✏

4 =?✏
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Non-convergent paths

I Down - Up - Down - Up ....

✏ & ✏
2 % 2✏2 � ✏

4 = ✏ if ✏ =
p
5
2 � 1

2 = 1
� ⇡ 0.61803398875

Golden ratio : � :=
1 +

p
5

2
⇡ 1.61803398875
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Non-convergent paths
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Google images: golden ratio in nature














































































Encoding circuit














































































What do we do with the noisy channels?
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C=1-P[erasure]          rank



We can freeze noisy channels!














































































sheets

C=1-P[erasure]          rank



Freezing noisy channels












































































better

C=1-P[erasure]          rank



Encoding and decoding

all the bad channels are frozen

I successive cancellation decoder will correctly recover the

message with high probability!
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Polarization of general channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

W
�(Y1, Y2|U1) =

1

2

X

u2

W1(y1|u1 � u2)W2(y2|u2)

W
+(Y1, Y2, U1|U2) =

1

2
W1(y1|u1 + u2)W2(y2|u2)

I(W�) + I(W+) = I(W ) + I(W ) = 2I(W )

I Mrs Gerber’s Lemma: If I(W ) = 1�H(p), then

I(W+)� I(W�1) � 2H(2p(1� p))�H(p)














































































Polarization of general channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

W
�(Y1, Y2|U1) =

1

2

X

u2

W1(y1|u1 � u2)W2(y2|u2)

W
+(Y1, Y2, U1|U2) =

1

2
W1(y1|u1 + u2)W2(y2|u2)

I(W�) + I(W+) = I(W ) + I(W ) = 2I(W )

I Mrs Gerber’s Lemma: If I(W ) = 1�H(p), then

I(W+)� I(W�1) � 2H(2p(1� p))�H(p)














































































Polarization of general channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 ! (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

W
�(Y1, Y2|U1) =

1

2

X

u2

W1(y1|u1 � u2)W2(y2|u2)

W
+(Y1, Y2, U1|U2) =

1

2
W1(y1|u1 + u2)W2(y2|u2)

I(W�) + I(W+) = I(W ) + I(W ) = 2I(W )

I Mrs Gerber’s Lemma: If I(W ) = 1�H(p), then

I(W+)� I(W�1) � 2H(2p(1� p))�H(p)
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Polarization theorem

C(W ) = capacity of the original channel

I C(W ) fraction of channels converge to noiseless channels

with mutual information ⇡ 1

I 1� C(W ) fraction of channels converge noisy channels with

mutual information ⇡ 0

n total channel uses:

nC(W ) noiseless and n(1� C(W )) noisy

I By freezing the noisy channels to zero we get

Rate ! nC(W )
n = C(W )

I Achieves capacity as n gets large! This is true for any

symmetric channel!
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Polarization Theorem (formal)

Theorem

The bit-channel capacities {C (Wi )} polarize: for any 
� 2 (0, 1), as the construction size N grows


no. channels with C (Wi ) > 1 � �

N

�
�! C (W )

and


no. channels with C (Wi ) < �

N

�
�! 1 � C (W )

0

�

1 � �

1














































































Polarization as capacity changes














































































Consequence of the Polarization Theorem

Theorem

For any rate R < I (W ) and block-length N, the probability of

frame error for polar codes under successive cancelation decoding is

bounded as

Pe(N,R) = o

⇣
2
�
p

N+o(
p

N)
⌘
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5G Communications

I The jump from 4G to 5G is far larger than any previous

jumps–from 2G to 3G; 3G to 4G

I The global 5G market is expected reach a value of 251 Bn by

2025

I In 2016, researchers reached 27 Gbps downlink using Polar

Codes

I Current LTE download speed is 5-12 Mbps

I In November 2016, 3GPP agreed to adopt Polar codes for

control channels in 5G. LDPC codes will be used in data

channels.
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Other Applications: Distributed Computing in Data

Centers

Facebook Data Center, New Albany OH.














































































Data Centers














































































Distributed Computing












































































need to wait workers to finish local computations



Distributed Computing
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Computational Polarization

M1

M2

+

+⇥
�1

A1 +A2

A1 �A2

f(A1 +A2)

f(A1 �A2)

A1

A2

decode f(A1)

max(T1, T2)

decode f(A2)|f(A1)

min(T1, T2)

f(A1)

f(A2)

B. Bartan and M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes, Annual Allerton

Conference on Communication, Control, and Computing 2019. arxiv.org/pdf/1901.06811

f A A B

M. Pilanci, Computational Polarization: An Information-Theoretic Method for Resilient 
Computing, IEEE Transactions on Information Theory, 2022



Polarization of computation times

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1



Polarization for computation



Polarization of computation times
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Polar codes for computation



Polar coded machine learning

B. Bartan and M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes, Annual Allerton

Conference on Communication, Control, and Computing 2019. arxiv.org/pdf/1901.06811



Questions?



Cloud computing on Amazon Lambda



Extensions

I Ternary Erasure Channel



Details on Decoding: Divide and Conquer



Successive Cancellation Decoder
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Successive Cancellation Decoder



Successive Cancellation Decoder



Successive Cancellation Decoder



Successive Cancellation Decoder



Successive Cancellation Decoder



Reduction to 4⇥ 4

I Decoding the lower block u5, u6, u7, u8 is done similarly with a

4⇥ 4 block of W
+

channels



Mutual Information in TEC
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Mutual Information in TEC
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Mutual Information in TEC
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Mutual Information in TEC
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Capacity of the binary erasure channel (BEC)

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:

1 � ✏

1 � ✏

✏

✏

1

0

1

0

BSC(✏)

1 � ✏

1 � ✏

✏

✏

1

0

1

0

?

BEC(✏)

I(X;Y ) = H(X)�H(X|Y )

= H(X)�H(X)✏� 0P (Y = 0)� 0P (Y = 1)

= (1� ✏)H(X)

Picking X ⇠ Ber(12), we have H(X) = 1. Thus, the capacity of

BEC is C = 1� ✏ Capacity of the BEC with erasure probability ✏ is

C = 1� ✏
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