EE 276: Information Theory

Polar Codes

Mert Pilanci

Stanford University
February 15, 2024

Outline

- Polar code construction
- Achieving channel capacity
- Decoding
- Applications and Extensions

Channel Capacity

- Channel capacity C is the maximal rate of reliable communication
- Shannon's Second Fundamental Theorem (from Lecture 7) :

$$
C=\max _{P_{X}} I(X ; Y)
$$

Capacity of the binary erasure channel (BEC)

Capacity of the BEC with erasure probability ϵ is $C=1-\epsilon$

Channel Coding

$$
\begin{aligned}
& J:\{1,2, \ldots, M\} \rightarrow \text { encoder } \xrightarrow{X^{n}} \xrightarrow{K} \text { channel } P_{Y \mid X} \\
& K=\log _{2} M
\end{aligned}
$$

rate: $R=\frac{\log M}{n}$ bits/channel use
probability of error $\operatorname{Perror}=\operatorname{Probability}[\hat{J} \neq J]$

Channel Coding

$$
J:\{1,2, \ldots, M\} \rightarrow \text { encoder } \xrightarrow{X^{n}} \quad \text { channel } P_{Y \mid X} \xrightarrow{Y^{n}} \text { decoder } \rightarrow \hat{J}
$$

rate: $R=\frac{\log M}{n}$ bits/channel use
probability of error $P_{\text {error }}=\operatorname{Probability~}[\hat{J} \neq J]$

- If $R<C$, then there exists a communication scheme with rate $\geq R$ and probability of error: $P_{\text {error }} \rightarrow 0$

Channel Coding

$$
J:\{1,2, \ldots, M\} \rightarrow \text { encoder } \xrightarrow{X^{n}} \underset{\longrightarrow}{Y^{n}} \text { decoder } \rightarrow \hat{J}
$$

rate: $R=\frac{\log M}{n}$ bits/channel use probability of error $\operatorname{Perror}=\operatorname{Probability}[\hat{J} \neq J]$

- If $R<C$, then there exists a communication scheme with rate $\geq R$ and probability of error: $P_{\text {error }} \rightarrow 0$
- If $R>C$, then rate R is not achievable (P error is large) Shannon's Second Theorem: Maximum rate of reliable communication is $C=\max _{P_{X}} I(X ; Y)$

Shannon's Coding Method

- random codebook (from Lecture) $\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}$

codeword 1	0	1	1	0	1	\ldots
codeword 2	1	1	0	1	0	\ldots
codeword 3	1	1	0	1	0	\ldots
codeword 4	0	0	0	0	1	\ldots
codeword 5	1	0	0	0	0	\ldots
codeword 6	0	1	0	0	1	\ldots
codeword 7	0	0	1	1	0	\ldots
codeword 8	1	0	0	0	1	\ldots

- not explicitly constructed
- shows the existence of good codes
- not computationally efficient
"Almost all codes are "good" codes except for the the ones that we can think of..." Jack Wolfe

Today: Polar Codes

- Invented by Erdal Arıkan in 2009
- First code with an explicit construction to provably achieve the channel capacity
- Efficient encoding/decoding operations
(channel coding vs source coding)

Basic 2×2 transformation

$$
\begin{aligned}
& \text { Xor } \\
& \begin{array}{l}
u_{1} \oplus u_{2} \\
\hline u_{2}=0 \\
u_{1}=0
\end{array} u_{2}=1 \\
& \hline
\end{aligned}
$$

$U_{1}, U_{2} \in\{0,1\}$ two input bits $X_{1}, X_{2} \in\{0,1\}$ two output bits

Basic 2×2 transformation

$U_{1}, U_{2} \in\{0,1\}$ two input bits $X_{1}, X_{2} \in\{0,1\}$ two output bits

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2}=U_{1} \text { XOR } U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Basic 2×2 transformation

$U_{1}, U_{2} \in\{0,1\}$ two input bits $X_{1}, X_{2} \in\{0,1\}$ two output bits

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2}=U_{1} \text { XOR } U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

alternatively

$$
\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \quad \text { modulo } 2
$$

Inverting the transform

Inverting the transform

$$
\begin{aligned}
2 \times 2 \text { transformation } \quad G_{2}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] & \\
G_{2} G_{2} U & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
U_{1} \oplus U_{2} \\
U_{2}
\end{array}\right]=\left[\begin{array}{c}
U_{1} \oplus \overparen{U_{2} \oplus U_{2}} \\
U_{2}
\end{array}\right]=\left[\begin{array}{c}
U_{1} \\
U_{2}
\end{array}\right]
\end{aligned}
$$

Erasure channel

$\mathrm{BEC}(\epsilon)$

Naively combining erasure channels

- Repetition coding

$$
\begin{aligned}
P\left(u_{1} \text { is erased }\right) & =P\left(y_{1} \text { erased \& } y_{2} \text { eared }\right) \\
& =\epsilon \epsilon=\epsilon^{2}
\end{aligned}
$$

Repetition code with rate $1 / n$
0.1

$$
\begin{gathered}
(0.1)^{n} \\
\text { Rate }=\frac{1}{n}
\end{gathered}
$$

- Repetition coding

$$
\begin{aligned}
& P(U \text { is erased })= \\
& P\left(\text { all } Y_{i} \text { erred if }(n)\right) \\
& =\epsilon^{n}
\end{aligned}
$$

Combining two erasure channels

Invertible transformation does not alter capacity or mutual information: $I(U ; Y)=I(X ; Y)$

Sequential decoding: Decode U_{1} and U_{2} one by one

$$
\begin{aligned}
& u_{1} \oplus u_{2} \oplus u_{2}=u_{1} \\
&2 \cdot 0.1-0.1)^{2}
\end{aligned}
$$

First bit-channel $W_{1}: U_{1} \rightarrow\left(Y_{1}, Y_{2}\right)$

$$
\begin{aligned}
& P\left(u_{1} \text { is erased }\right)=P\left(U_{\text {, excused or }}\right. \\
& y_{2} \text { erased) } \\
& =1-(1-t)^{2} \\
& =1-\left(1-2 t+t^{2}\right)=2 t-t^{2}
\end{aligned}
$$

suppose a 'genie' provides this bit

Second bit-channel $W_{2}: U_{2} \rightarrow\left(Y_{1}, Y_{2}, U_{1}\right)$

suppose a 'genie' provides this bit

Second bit-channel $W_{2}: U_{2} \rightarrow\left(Y_{1}, Y_{2}, U_{1}\right)$

GPT4 prompt: generate an artistic depiction of a genie aided channel decoder

Second bit-channel $W_{2}: U_{2} \rightarrow\left(Y_{1}, Y_{2}, U_{1}\right)$

$$
P\left(U_{2} \text { is erased }\right)=E^{2}
$$

probability	Y_{1} erased	Y_{1} not erased
Y_{2} erased	ϵ^{2}	$\epsilon(1-\epsilon)$
Y_{2} not erased	$\epsilon(1-\epsilon)$	$(1-\epsilon)^{2}$

Two different cases: W_{1} and W_{2}

- W_{1} : Decoding U_{1} when U_{2} is not available
U_{1} is erased when Y_{1} is erased or Y_{2} is erased
Failure probability $=1-(1-\epsilon)^{2}=2 \epsilon-\epsilon^{2}$

- W_{2} : Decoding U_{2} when U_{1} is available
U_{2} is erased when Y_{1} is erased and Y_{2} is erased
Failure probability $=\epsilon^{2}$

Capacity is conserved

$$
C\left(W_{1}\right)+C\left(W_{2}\right)=C(W)+C(W)=2 C(W)
$$

$$
C\left(W_{1}\right) \leq C(W) \leq C\left(W_{2}\right)
$$

Extending the size

Extending the size

Sequential decoding:

- Decode U_{1} from $Y_{1}, Y_{2}, Y_{3}, Y_{4}$
erased if (Y_{1} or Y_{2} erased) or (Y_{3} or Y_{4} erased)

Extending the size

Sequential decoding:

- Decode U_{1} from $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ erased if (Y_{1} or Y_{2} erased) or (Y_{3} or Y_{4} erased)
- Decode U_{2} from $Y_{1}, Y_{2}, Y_{3}, Y_{4}, U_{1}$
erased if (Y_{1} or Y_{2} is erased) and (Y_{3} or Y_{4} is erased)

Extending the size

Sequential decoding:

- Decode U_{1} from $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ erased if (Y_{1} or Y_{2} erased) or (Y_{3} or Y_{4} erased)
- Decode U_{2} from $Y_{1}, Y_{2}, Y_{3}, Y_{4}, U_{1}$
erased if (Y_{1} or Y_{2} is erased) and (Y_{3} or Y_{4} is erased)
- Decode U_{3} from $Y_{1}, Y_{2}, Y_{3}, Y_{4}, U_{1}, U_{2}$
erased if (Y_{1} and Y_{2} is erased) or (Y_{3} and Y_{4} is erased)
- Decode U_{4} from $Y_{1}, Y_{2}, Y_{3}, Y_{4}, U_{1}, U_{2}, U_{3}$
erased if (Y_{1} and Y_{2} erased) and (Y_{3} and Y_{4} erased)

Recursive Calculation of Failure Probability

Sequential decoding;

- Decode U_{1}

$$
\text { erased if }\left(Y_{1} \text { or } Y_{2} \text { erased }\right) \text { or }\left(Y_{3} \text { or } Y_{4} \text { erased }\right)
$$

failure probability $=2 \hat{\epsilon}-\hat{\epsilon}^{2}=2\left(2 \epsilon-\epsilon^{2}\right)-\left(2 \epsilon-\epsilon^{2}\right)^{2}$

Recursive Calculation of Failure Probability

Sequential decoding:

- Decode U_{1}
erased if (Y_{1} or Y_{2} erased) or (Y_{3} or Y_{4} erased)
failure probability $=2 \hat{\epsilon}-\hat{\epsilon}^{2}=2\left(2 \epsilon-\epsilon^{2}\right)-\left(2 \epsilon-\epsilon^{2}\right)^{2}$
- Decode U_{2}
erased if (Y_{1} or Y_{2} is erased) and (Y_{3} or Y_{4} is erased)
failure probability $=\hat{\epsilon}^{2}=\left(2 \epsilon-\epsilon^{2}\right)^{2}$

Recursive Calculation of Failure Probability

Sequential decoding:

- Decode U_{1}
erased if (Y_{1} or Y_{2} erased) or (Y_{3} or Y_{4} erased)
failure probability $=2 \hat{\epsilon}-\hat{\epsilon}^{2}=2\left(2 \epsilon-\epsilon^{2}\right)-\left(2 \epsilon-\epsilon^{2}\right)^{2}$
- Decode U_{2}
erased if (Y_{1} or Y_{2} is erased) and (Y_{3} or Y_{4} is erased)
failure probability $=\hat{\epsilon}^{2}=\left(2 \epsilon-\epsilon^{2}\right)^{2}$
- Decode U_{3}
erased if (Y_{1} and Y_{2} is erased) or (Y_{3} and Y_{4} is erased)
failure probability $=2 \tilde{\epsilon}-\tilde{\epsilon}^{2}=2\left(\epsilon^{2}\right)-\left(\epsilon^{2}\right)^{2}$

Recursive Calculation of Failure Probability

Sequential decoding:

- Decode U_{1}
erased if (Y_{1} or Y_{2} erased) or (Y_{3} or Y_{4} erased)
failure probability $=2 \hat{\epsilon}-\hat{\epsilon}^{2}=2\left(2 \epsilon-\epsilon^{2}\right)-\left(2 \epsilon-\epsilon^{2}\right)^{2}$
- Decode U_{2}
erased if (Y_{1} or Y_{2} is erased) and (Y_{3} or Y_{4} is erased)
failure probability $=\hat{\epsilon}^{2}=\left(2 \epsilon-\epsilon^{2}\right)^{2}$
- Decode U_{3}

erased if (Y_{1} and Y_{2} is erased) or (Y_{3} and Y_{4} is erased)
failure probability $=2 \tilde{\epsilon}-\tilde{\epsilon}^{2}=2\left(\epsilon^{2}\right)-\left(\epsilon^{2}\right)^{2}$
- Decode U_{4}
erased if (Y_{1} and Y_{2} erased) and (Y_{3} and Y_{4} erased)
failure probability $=\tilde{\epsilon}^{2}=\left(\epsilon^{2}\right)^{2}$

Polarization process

Larger construction

Larger construction

Question: What happens if we keep extending the size?

Larger construction

Gambling and Martingales

- you can bet red or black

Probability[red] $=\frac{1}{2} \quad$ Probability[black] $=\frac{1}{2}$

- a betting strategy that always wins (! $)^{1}$: double the bet after every loss
until you win:
bet $\$ 1$ on black bet $\$ 2$ on black bet $\$ 4$ on black
${ }^{1}$ do not try this at home (or at the casino)

Gambling and Martingales

until you win:

bet $\$ 1$ on black
bet $\$ 2$ on black
bet $\$ 4$ on black
bet $\$ 8$ on black
bet $\$ 16$ on black
bet \$32 on black

- Martingale betting strategy is a winning strategy only if you have unbounded wealth
- It is not sustainable

Probability[Loosing 6 in a row] $=\frac{1}{2^{6}} \approx 0.016$. This will eventually happen if you repeat many times

Martingale Processes

A martingale process is a sequence of random variables for which the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values.

- Martingales processes are important finance, e.g., in stock trading, Black Scholes option pricing model (which won the Nobel prize in economics)

Back to Polar Codes

Let e_{t} be random ± 1 for $t=1,2 \ldots$. The polarization process is

$$
\begin{aligned}
w_{t+1} & =w_{t}+e_{t} w_{t}\left(1-w_{t}\right) \\
& = \begin{cases}2 w_{t}-w_{t}^{2} & e_{t}=+1 \\
w_{t}^{2} & e_{t}=-1\end{cases}
\end{aligned}
$$

Sample paths

Martingales

$$
w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)
$$

- the expectation of the next value is equal to the previous value: $\mathbb{E}\left[w_{t+1} \mid w_{t}\right]=w_{t}$

Martingales

$$
w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)
$$

- the expectation of the next value is equal to the previous value: $\mathbb{E}\left[w_{t+1} \mid w_{t}\right]=w_{t}$
- Martingale processes converge to a limiting distribution if they are bounded
- polarization process $w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)$ converges to $w(1-w)=0 \quad$ why? $w=0$ (erasure probability one) or
$w=1$ (erasure probability zero)

Evolution of physical systems

Gradient descent

$$
\underbrace{w_{t+1}}_{\text {next }}=\underbrace{w_{t}}_{\text {curameters }}+\underbrace{f\left(w_{t}\right)}_{\text {parameters }}
$$

$$
\begin{aligned}
& w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right) \\
& \text { converges, i.e., } w_{t+1}=w_{t} \text { when } f\left(w_{t}\right)=w_{t}\left(1-w_{t}\right)=0
\end{aligned}
$$

$$
w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)
$$

plot of $f(w)=w(1-w)$

Polarization theorem

- the process

$$
w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)
$$

converges to either zero or one with probability one!

- implies that almost all channels are either perfect or completely noisy

Non-convergent paths

Down - Up - Down - Up
$\epsilon \searrow \epsilon^{2} \nearrow 2 \epsilon^{2}-\epsilon^{4}=? \epsilon$

Non-convergent paths

- Down - Up - Down - Up

$$
\epsilon \searrow \epsilon^{2} \nearrow 2 \epsilon^{2}-\epsilon^{4}=\epsilon \text { if } \epsilon=\frac{\sqrt{5}}{2}-\frac{1}{2}=\frac{1}{\phi} \approx 0.61803398875
$$

Non-convergent paths

- Down - Up - Down - Up
$\epsilon \searrow \epsilon^{2} \nearrow 2 \epsilon^{2}-\epsilon^{4}=\epsilon$ if $\epsilon=\frac{\sqrt{5}}{2}-\frac{1}{2}=\frac{1}{\phi} \approx 0.61803398875$
Golden ratio : $\quad \phi:=\frac{1+\sqrt{5}}{2} \approx 1.61803398875$

Non-convergent paths

- Down - Up - Down - Up

$$
\epsilon \searrow \epsilon^{2} \nearrow 2 \epsilon^{2}-\epsilon^{4}=\epsilon \text { if } \epsilon=\frac{\sqrt{5}}{2}-\frac{1}{2}=\frac{1}{\phi} \approx 0.61803398875
$$

Golden ratio : $\quad \phi:=\frac{1+\sqrt{5}}{2} \approx 1.61803398875$

Google images: golden ratio in nature

There won't be another day like June 1 hindustantimes.com

Examples Of The Golden Ratio memolition.com

Illustration of golden ratio in nature stock.adobe.com

The Golden Ratio and Fibonacci S icytales.com

The Golden Ratio Occurring in Nature themodernape.com

themodernape.com

The Golden Ratio
unc.edu

The Golden Ratio in nature | Downlo researchgate net

Examples Of The Golden Ratio Y. memolition.com

Quantum Golden Ratio » ISO50 Blog - The blog.iso50.com

Class Assignment \#1 Golden Ratio a bellhsgraphicdesign1.blogspot.com

The golden ratio in nature, unveiled . phimatrix.com

| slider-nature-golden-ratio flickr.com

Fibonacci Sequence \& Gold... dreamgains.com

golden ratio. Truly divine . imgur.com

Encoding circuit

$$
\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

What do we do with the noisy channels?

We can freeze noisy channels!

rank

Freezing noisy channels

$\mathrm{C}=1-\mathrm{P}$ [erasure] rank

Encoding and decoding

all the bad channels are frozen

- successive cancellation decoder will correctly recover the message with high probability!

Polarization of general channels

$$
\begin{aligned}
W^{-}\left(Y_{1}, Y_{2} \mid U_{1}\right) & =\frac{1}{2} \sum_{u_{2}} W_{1}\left(y_{1} \mid u_{1} \oplus u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
W^{+}\left(Y_{1}, Y_{2}, U_{1} \mid U_{2}\right) & =\frac{1}{2} W_{1}\left(y_{1} \mid u_{1}+u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right)
\end{aligned}
$$

Polarization of general channels

$$
\begin{gathered}
W^{-}\left(Y_{1}, Y_{2} \mid U_{1}\right)=\frac{1}{2} \sum_{u_{2}} W_{1}\left(y_{1} \mid u_{1} \oplus u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
W^{+}\left(Y_{1}, Y_{2}, U_{1} \mid U_{2}\right)=\frac{1}{2} W_{1}\left(y_{1} \mid u_{1}+u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
I\left(W^{-}\right)+I\left(W^{+}\right)=I(W)+I(W)=2 I(W)
\end{gathered}
$$

Polarization of general channels

$$
\begin{aligned}
W^{-}\left(Y_{1}, Y_{2} \mid U_{1}\right) & =\frac{1}{2} \sum_{u_{2}} W_{1}\left(y_{1} \mid u_{1} \oplus u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
W^{+}\left(Y_{1}, Y_{2}, U_{1} \mid U_{2}\right) & =\frac{1}{2} W_{1}\left(y_{1} \mid u_{1}+u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right)
\end{aligned}
$$

$$
I\left(W^{-}\right)+I\left(W^{+}\right)=I(W)+I(W)=2 I(W)
$$

Mrs Gerber's Lemma: If $I(W)=1-\mathcal{H}(p)$, then
$\frac{1}{2}\left(I\left(W^{+}\right)-I\left(W^{-}\right)\right) \geq \mathcal{H}(2 p(1-p))-\mathcal{H}(p)>0$

Polarization theorem

$C(W)=$ capacity of the original channel

- $C(W)$ fraction of channels converge to noiseless channels with mutual information ≈ 1
- $1-C(W)$ fraction of channels donverge noisy channels with mutual information ≈ 0
$C(W)$ fraction

$$
C(W)-
$$

Polarization theorem

$C(W)=$ capacity of the original channel

- $C(W)$ fraction of channels converge to noiseless channels with mutual information ≈ 1
- $1-C(W)$ fraction of channels converge noisy channels with mutual information ≈ 0
n total channel uses:
$n C(W)$ noiseless and $n(1-C(W))$ noisy
- By freezing the noisy channels to zero we get Rate $\rightarrow \frac{n C(W)}{n}=C(W)$
- Achieves capacity as n gets large! This is true for any symmetric channel!

Polarization Theorem (formal)

Theorem
The bit-channel capacities $\left\{C\left(W_{i}\right)\right\}$ polarize: for any $\delta \in(0,1)$, as the construction size N grows

$$
\left[\frac{\text { no. channels with } C\left(W_{i}\right)>1-\delta}{N}\right] \longrightarrow C(W)
$$

and

$$
\left[\frac{\text { no. channels with } C\left(W_{i}\right)<\delta}{N}\right] \longrightarrow 1-C(W)
$$

Polarization as capacity changes

Consequence of the Polarization Theorem

Theorem

For any rate $R<I(W)$ and block-length N, the probability of frame error for polar codes under successive cancelation decoding is bounded as

$$
P_{e}(N, R)=o\left(2^{-\sqrt{N}+o(\sqrt{N})}\right)
$$

$2^{-\frac{N}{2}}$

5G Communications

- The jump from 4G to 5G is far larger than any previous jumps-from 2G to 3G; 3G to 4G
- The global 5G market is expected reach a value of 251 Bn by (2025)

5G Communications

- The jump from 4G to 5G is far larger than any previous jumps-from 2G to 3G; 3G to 4G
- The global 5G market is expected reach a value of 251 Bn by 2025
- In 2016, researchers reached 27 Gbps downlink using Polar Codes
- Current LTE download speed is $\mathbf{5 - 1 2} \mathbf{~ M b p s}$

5G Communications

- The jump from 4G to 5G is far larger than any previous jumps-from 2G to 3G; 3G to 4G
- The global 5G market is expected reach a value of 251 Bn by 2025
- In 2016, researchers reached 27 Gbps downlink using Polar Codes
- Current LTE download speed is $\mathbf{5 - 1 2} \mathbf{~ M b p s}$
- In November 2016, 3GPP agreed to adopt Polar codes for control channels in 5G. LDPC codes will be used in data channels.

Other Applications: Distributed Computing in Data Centers

Facebook Data Center, New Albany OH.

Data Centers

Distributed Computing

need to wait workers to finish local computations

Distributed Computing

Computational Polarization

M. Pilanci, Computational Polarization: An Information-Theoretic Method for Resilient Computing, IEEE Transactions on Information Theory, 2022
B. Bartan and M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes, Annual Allerton

Conference on Communication, Control, and Computing 2019. arxiv.org/pdf/1901.06811

Polarization of computation times

Polarization for computation

Polarization of computation times

Polar codes for computation

Polar coded machine learning

Fig. 8. Cost vs time for the gradient descent example.
B. Bartan and M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes, Annual Allerton

Conference on Communication, Control, and Computing 2019. arxiv.org/pdf/1901.06811

Questions?

Cloud computing on Amazon Lambda

Fig. 7. Job output times and decoding times for $N=512$.

Extensions

- Ternary Erasure Channel

Details on Decoding: Divide and Conquer

Successive Cancellation Decoder

First phase: treat a as noise, decode $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$

Successive Cancellation Decoder

End of first phase

Successive Cancellation Decoder

Second phase: Treat $\hat{\mathbf{b}}$ as known, decode $\left(u_{5}, u_{6}, u_{7}, u_{8}\right)$

Successive Cancellation Decoder

First phase in detail

Successive Cancellation Decoder

Equivalent channel model

Successive Cancellation Decoder

First copy of W^{-}

Successive Cancellation Decoder

Second copy of W^{-}

Successive Cancellation Decoder

Third copy of W^{-}

Successive Cancellation Decoder

Fourth copy of W^{-}

Reduction to 4×4

- Decoding the lower block $u_{5}, u_{6}, u_{7}, u_{8}$ is done similarly with a 4×4 block of W^{+}channels

Mutual Information in TEC

Evolution of Mutual Information in sub-channels (epsilon=0.2), ($\mathrm{n}=1$)

Mutual Information in TEC

Evolution of Mutual Information in sub-channels (epsilon=0.2), ($\mathrm{n}=2$)

Mutual Information in TEC

Evolution of Mutual Information in sub-channels (epsilon=0.2), ($n=3$)

Mutual Information in TEC

Evolution of Mutual Information in sub-channels (epsilon=0.2), ($n=4$)

Mutual Information in TEC

Evolution of Mutual Information in sub-channels (epsilon=0.2), ($\mathrm{n}=5$)

Capacity of the binary erasure channel (BEC)

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(X)-H(X) \epsilon-0 P(Y=0)-0 P(Y=1) \\
& =(1-\epsilon) H(X)
\end{aligned}
$$

Picking $X \sim \operatorname{Ber}\left(\frac{1}{2}\right)$, we have $H(X)=1$. Thus, the capacity of BEC is $C=1-\epsilon$ Capacity of the BEC with erasure probability ϵ is $C=1-\epsilon$

References

- Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, E. Arikan - IEEE Transactions on information Theory, 2009
- A Short Course on Polar Coding, E. Arikan, 2016

