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Channel Capacity

» Channel capacity C is the maximal rate of reliable
communication

» Shannon's Second Fundamental Theorem (from Lecture 7)

C' =max I(X;Y)
Px



Capacity of the binary erasure channel (BEC)
@(]O(I/ _/_37) '/—_>Ol?0|{7
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Capacity of the BEC with erasure probability e is C' =1 — ¢



Channel Coding

J:H{1,2,...,M} — | encoder | — |

channel Py |x

\g - (OS(LM
log M
n

rate: R = bits/channel use

probability of error Perror = Probability[j #* J|

decoder

—J



Channel Coding

JH{1,2,.... M} —

rate: R = IO%LM

probability of error Perror = Probability[j #* J|

encoder

bits/channel use

channel Py |x

decoder

» |If R < (), then there exists a communication scheme with

rate > R and probability of error: Perror — 0

—J



Channel Coding

J:{1,2,..., M} — |encoder | — | channel Py |x — | decoder

rate: R = 2™ pits/channel use

probability of error Perror = Probability[j #* J|

» |If R < (), then there exists a communication scheme with
rate > R and probability of error: Perror — 0

» If R > C, then rate R is not achievable (Perror is large)

Shannon's Second Theorem: Maximum rate of reliable
communication is C' = maxp, I(X;Y)

—J



Shannon’s Coding Method 11 0 1
O |

» random codebook (from Lecture ) 01 101

codeword 1
codeword 2
codeword 3
codeword 4
codeword 5
codeword 6
codeword 7
codeword 8

_o O = O = = O
SO R OO K=K
O R O O OO O
O R O O O = = O
_ O = O = O O

» not explicitly constructed
» shows the existence of good codes

» not computationally efficient

“Almost all codes are "good” codes except for the the ones that we can think of..."
Jack Wolfe

-\‘\')  —



Today: Polar Codes

» Invented by Erdal Arikan in 2009

» First code with an explicit construction to provably achieve
the channel capacity

» Efficient encoding/decoding operations

(channel coding vs source coding)



Basic 2 x 2 transformation

Ui,Us € {0,1} two input bits
X1, X5 € {0,1} two output bits




Basic 2 x 2 transformation

Uy ~ )Xl
W/
U» X
o >

Ui,Us € {0,1} two input bits

X1, X5 € {0,1} two output bits
X1 =U,®dU; = Uy XOR Uy
Xo = Uy



Basic 2 x 2 transformation

Uy ~ )Xl
</
Uy X2
@ >

Ui,Us € {0,1} two input bits
X1, X5 € {0,1} two output bits

X1=U;®Uy = U; XOR Uy
X9 = Us

Xl o 11 Ul
[Xg]_[() 1][[]2] modulo 2

alternatively



Inverting the transform




Inverting the transform

(2 [ —(
Ui ~ )Xl ~ gl
U/ U
Us X2 | Uo
. 1 1
2 X 2 transformation G ::[0 1]
(1171 1]
GaGolU =1 01”U2] -
- o -
11 UyeUs | | UidUxdUs |
__O 1 Us - Us -

Uy
Us



Erasure channel

BEC(¢)
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Naively combining erasure channels

BEC(e¢)
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» Repetition coding
U1 W _l/l
Y>
W —
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Repetition code with rate 1/n

BEC(¢)
]__
0 C .0
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€
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» Repetition coding
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Combining two erasure channels

Uq LUl Y1
W), W —
Us | L= Uy ” l/z

Invertible transformation does not alter capacity or mutual
information: I(U;Y) =1(X;Y)



Sequential decoding: Decode U; and U; one by one
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7-0.0- O)
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suppose a 'genie’ provides this bit

|

Second bit-channel Wy : Uy — (Y7, Ys, Uy)

U]_ r\ Y]_
), W —
U | W _2/2




suppose a 'genie’' provides this bit

Second bit- channel W2 - Uy — (Yl,Yz, U1)

(D = bonf 12

GPT4 prompt: generate an artlstlc deplctlon of genle aided channel decoder



Second bit-channel Wy : Uy — (Y7, Ys, Uy)

U]_ /'\ Y]_
), W —
U | W _2/2

P( KLL (S U&SQ;\> = éb

Pﬁo\ﬂ&u\ﬂr\j \l/\ erased \(, Net eraced
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1
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Two different cases: W7 and W5 W
&
» W;i: Decoding U; when Uj is not available
U1 is erased when Y7 is erased @2 IS erased

Failure probability =1 — (1 — €)* = 2¢ — ¢ worse erasure channel

U w ="

random U T W Y5

A4

» Ws: Decoding Uy when Uj is available

Us is erased when Y7 is erased |and)Y> is erased

Failure probability = ¢? better erasure channel

Us

@ w
Us T MR




Capacity is conserved




Extending the size

W —)




Extending the size

u, - s> wo—y,
U, w —Y;
U; _€>_>< &, W —Y;
U, w v,

Sequential decoding:
» Decode U1 from Yl,YQ,Yg,Y4
erased if (Y71 or Y5 erased) or (Y3 or Y, erased)



Extending the size

u, - S> wo—y,
U, w —Y;
Us _€>_>< D W —Y;
U, w v,

Sequential decoding:
» Decode U; from Yi,Y5, Y3, Yy
erased if (Y71 or Y5 erased) or (Y3 or Y, erased)
» Decode Uy from Y7,Y5, Y3, Yy, Uy

erased if (Y] or Ys is erased) and (Y3 or Y} is erased)



Extending the size

u, - S> wo—y,
U, w —Y;
Us _€>_>< D W —Y;
U, w v,

Sequential decoding:

» Decode U; from Yi,Y5, Y3, Yy

erased if (Y71 or Y5 erased) or (Y3 or Y, erased)
» Decode Uy from Y7,Y5, Y3, Yy, Uy

erased if (Y] or Ys is erased) and (Y3 or Y} is erased)
» Decode Us from Y7,Y5,Ys, Yy, Ui, Us

erased if (Y7 and Y5 is erased) or (Y3 and Y} is erased)
» Decode Uy from Y7,Y5, Y3, Y, Ui, Uy, Us

erased if (Y7 and Y5 erased) and (Y3 and Y} erased)



Recursive Calculation of Failure Probability

Sequential decoding:M L
éc (Lé/é
» Decode Uy e

erased if (Y] or Y5 erased) or (Y3 or Y, erased)
failure probability= 2¢ — é2= 2(2¢ — €?) — (2¢ — €2)?



Recursive Calculation of Failure Probability

Sequential decoding:
» Decode U;
erased if (Y] or Y5 erased) or (Y3 or Y, erased)
failure probability= 2¢ — é2= 2(2¢ — €2) — (2¢€ — €2)?
» Decode U r/\L
erased if (Y] or Ys is erased) and (Y3 or Y} is erased)
failure probability= é?= (2¢ — €2)?



Recursive Calculation of Failure Probability

Sequential decoding:
» Decode U
erased if (Y] or Y5 erased) or (Y3 or Y, erased)
failure probability= 2¢ — é2= 2(2¢ — €2) — (2¢ — €*)?
» Decode Uy
erased if (Y] or Ys is erased) and (Y3 or Y} is erased)
failure probability= ¢*= (2 — €?)?
» Decode Us
erased if (Y7 and Y5 is erased) or (Y3 and Y is erased)
failure probability= 2¢ — 2= 2(e?) — (&%)*



Recursive Calculation of Failure Probabllltyﬂc NP

-
Sequential decoding: C ) —_

T
» Decode Uy ( )
erased if (Y] or Y5 erased) or (Y3 or Y, erased)
failure probability= 2¢ — é2= 2(2¢ — €2) — (2¢ — €*)?
» Decode Uy
erased if (Y] or Ys is erased) and (Y3 or Y} is erased)
failure probability= ¢*= (2 — €?)?
» Decode Us Z = £
erased if (Ymed) or (Y3 and Y is erased)
failure probability= 2¢ — 2= 2(e?) — (&%)*
» Decode Uy
erased if (Y1 and Y5 erased) and (Y3 and Y, erased)

failure probability= é*= (€?)?
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Larger construction

Question: What happens if we keep extending the size?



Larger construction

V4




Gambling and Martingales

» you can bet red or black
Probability[red] = 5 Probability[black] = 3

» a betting strategy that always wins (1)!: double the bet after
every loss

until you win: | </
bet $1 on black 7
bet $2 on black \
bet $4 on black \

'do not try this at home (or at the casino)




Gambling and Martingales

until you win:
bet $1 on black
bet $2 on black
bet $4 on black
bet $8 on black
bet $16 on black
bet $32 on black

» Martingale betting strategy is a winning strategy only if you
have unbounded wealth

» It is not sustainable

Probability[ Loosing 6 in a row|=55 & 0.016. This will
eventually happen if you repeat many time




Martingale Processes

A martingale process is a sequence of random variables for
which the conditional expectation of the next value in the
sequence is equal to the present value, regardless of all prior
values.
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» Martingales processes are important finance, e.g., in stock
trading, Black Scholes option pricing model (which won the
Nobel prize in economics)



Back to Polar Codes
1e- -

¢ <}
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Let e; be random =£1 for t = 1, 2.... The polarization process is
Wt+1 — Wy + etwt(l — wt)
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Sample paths



Martingales

Wt4+1 — Wy + etwt(l — ’U}t)

» the expectation of the next value is equal to the previous
value: E|wyi1|w:| = wy



Martingales

Wt4+1 — Wy + etwt(l — ’U}t)

» the expectation of the next value is equal to the previous
value: E|wyi1|w:| = wy

» Martingale processes converge to a limiting distribution if they
are bounded

» polarization process wy+1 = wy + e;wy(1 — wy)

converges to w(l —w) =0  why? (y=o &
e o
w = 0 (erasure probability one) or N

w = 1 (erasure probability zero)



Evolution of physical systems

W1 Wy + f(wy
\ti/ —~— \(,_2

next position  current position displacement




w
-gradient

Wt
—~
current parameters

Wi+1
N——~
next parameters

Gradient descent

Wt -+ etwt(l — ’LUt)

Wt+1

converges, i.e., wyr1 = wy when f(wy) = we(1 —wy) =0



W41 — Wy + etwt(l — wt)

plot of f(w) = w(1l —w)

+0.3




Polarization theorem

» the process
Wt4+1 — Wy -+ etwt(l — wt)

converges to either zero or one with probability one!

» implies that almost all channels are either perfect or
completely noisy



Non-convergent paths

» Down - Up - Down - Up ....
e\, € N2 — et =7




Non-convergent paths

» Down - Up - Down - Up ....

eN € 122 —et=¢€ife= ~ 0.61803398875

S
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Non-convergent paths

» Down - Up - Down - Up ....

eN € 122 —et=¢€ife= ~ 0.61803398875

S
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1
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1
Golden ratio : ¢ := _|_2\/§ ~ 1.61803398875




Non-convergent paths

» Down - Up - Down - Up ....
eN €2 N2 —et=cife=

Golden ratio : ¢ :=
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Encoding circuit
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What do we do with the noisy channels?

C=1-P[erasure] rank @ &/\/C - L
~ 7
0.0039 8 =0 U — D D
\—_/ (
0.1211 7 U(/@ Us D D
/
0.1914 6 Ua//@ Us — D
\/ 06836 4 Us D
0.3164 5 u{ﬁ Us —D &
V 0.8086 3 Us D
\/ 0.8789 2 Uy D

M 0.9961 1 Us




We can freeze noisy channels!

N
N

N
¢/

N
¢/

D
&/

C=1-P[erasure] rank
0.0039 8 frozen U D D
0.1211 7 frozen U D
0.1914 6 frozen Us ()
0.6836 4 data U,
0.3164 5 frozen Us —P D
0.8086 3 data Ug &P
0.8789 2 data Uy —P
0.9961 1 data Ug




Freezing noisy channels

C=1-P[erasure] rank
0.0039 8 frozen 0
0.1211 7 frozen 0
0.1914 6 frozen 0
0.6836 4 data Uy
0.3164 5 frozen 0
0.8086 3 data U
0.8789 2 data U

0.9961 1 data Ug

N
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N
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Encoding and decoding

all the bad channels are frozen

» successive cancellation decoder will correctly recover the
message with high probability!

frozen & 0 1 o Llwlh
frozen T 0 b 1 b 1 W | Yo
frozen D 1 | 1 o 0 W | Y3
free 1 1 1 () 0 W Yy
frozen 9 4 1 P 0 0 W Ys
free T 1 - 0 : 0w | Yo
free O f}\l | 1 : - % Y7
free Tl 1 | - W Ys




Polarization of general channels

W=(Y1,Ys|Uy) = ZW1 (y1|ur @ u2) Wa(ya|usg)

W (Y1, Ys, Up|Uz) = §W1(3/1\U1 + u2) Wa(y2|uz)



Polarization of general channels

W=(Y1,Ys|Uy) = ZWl (y1|ur @ u2) Wa(ya|usg)

W (Y1, Ys, Up|Uz) = §W1(y1\u1 + u2) Wa(y2|uz)

IW)+IWH) =I(W) +I(W) =2[(W)



Polarization of general channels <1L(w >
U1 K—P W _2/1 1 C\Mﬁ>

U2 T Y2

W H—

W=(Y1,Ys|Uy) = ZW1 (y1|ur @ u2) Wa(ya|usg)

W (Y1, Ys, Up|Uz) = §W1(3/1\U1 + u2) Wa(y2|uz)

IW)+IWH) =I(W) +I(W) =2[(W) /LF( ) IfL
5= 0 &

; Mrs Gerber’s Lemma: If I(W) =1—"H(p), then |

S(IWH) = I(W= )= H(2p(1 —p)) —H(p) ~C



Polarization theorem (W)= 1-¢

C' (W) = capacity of the original channel

» (C'(W) fraction of channels converge to noiseless channels
with mutual information ~ 1

» 1 — C(W) fraction of channels donverge noisy channels with
mutual information ~ 0
C' (W) fraction

1 — C(W) fraction



Polarization theorem

C' (W) = capacity of the original channel

» (C'(W) fraction of channels converge to noiseless channels
with mutual information ~ 1

» 1 — C(W) fraction of channels converge noisy channels with
mutual information ~ 0

n total channel uses:
nC(W) noiseless and n(1 — C(W)) noisy

» By freezing the noisy channels to zero we get
Rate — an(%W) = C(W)

» Achieves capacity as n gets large! This is true for any
symmetric channel!




Polarization Theorem (formal)

Theorem

The bit-channel capacities { C(W;)} polarize: for any
d € (0,1), as the construction size N grows

[no. channels with C(W;) > 1 — 5] s C(W)
N
and
[no. channels vx;th C(W;) < 5] v 1— C(W)




Polarization as capacity changes




Consequence of the Polarization Theorem

For any rate R < [(W) and block-length N, the probability of
frame error for polar codes under successive cancelation decoding is

bounded as
Pe(N, R) = o (27/N+o(V))
- N
N
[ (Ao 9~

0%



5G Communications

» The jump from 4G to 5G is far larger than any previous
jumps—from 2G to 3G; 3G to 4G

> T lobal 5G market is expected reach a value of 251 Bn by
02



5G Communications

» The jump from 4G to 5G is far larger than any previous
jumps—from 2G to 3G; 3G to 4G

» The global 5G market is expected reach a value of 251 Bn by
2025

» In 2016, researchers reached 27 Gbps downlink using Polar
Codes h

» Current LTE download speed is 5-12 Mbps




5G Communications

» The jump from 4G to 5G is far larger than any previous
jumps—from 2G to 3G; 3G to 4G

» The global 5G market is expected reach a value of 251 Bn by
2025

» In 2016, researchers reached 27 Gbps downlink using Polar
Codes

» Current LTE download speed is 5-12 Mbps

» In November 2016,1(3_P/P ed to adopt Polar codes for
control channels in 5G.@des will be used in data

channels. —

/_\



Other Applications: Distributed Computing in Data
Centers

Facebook Data Center, New Albany OH.



Data Centers




Distributed Computing

Parameter Server

/ b

g 7 L seesse g
Worker 1 Worker 2 Worker 3 Worker N

. !
©E E € B

Databsse 1 Database 2 Database 3 Database N

need to wait workers to finish local computations



Distributed Computing
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Computational Polarization

A1+ Az decode f(A1)
A }Q - Mo~ f(Al T A2) ] maX(T1,T2)1 e f(Al)
Y
Ay — A2 decode
f(A2)]f(A1)
A2 * g My > f(Al N Az) ] min(T1,T2)2 1 [ f(A2)
-1

rA)= A

M. Pilanci, Computational Polarization: An Information-Theoretic Method for Resilient
Computing, IEEE Transactions on Information Theory, 2022

B. Bartan and M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes, Annual Allerton

Conference on Communication, Control, and Computing 2019. arxiv.org/pdf/1901.06811



Polarization of computation times
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Polarization for computation




Polarization of computation times

4 4 ! 4 4
3 3 3 3
2 2 2 2
1 1 1 1
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Polar codes for computation




Polar coded machine learning

104 T T T T |
103§

10% |

cost

"|-e—Uncoded, 8 nodes

10° -|——Polar coding, N = 16, ¢ = 0.5
f Polar coding, N = 32, ¢ =0.75

-|—=—Polar coding, N = 64, ¢ = 0.875\‘

0 20 40 60 80 100 120
time (sec)

Fig. 8. Cost vs time for the gradient descent example.

B. Bartan and M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes, Annual Allerton

Conference on Communication, Control, and Computing 2019. arxiv.org/pdf/1901.06811



Questions?



Cloud computing on Amazon Lambda
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Fig. 7. Job output times and decoding times for N = 512.




Extensions

» Ternary Erasure Channel




Details on Decoding: Divide and Conquer

u1

u?

u3
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us

Ue

uy
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D
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T d2 X6
CP | d3 X7
T d4 X8
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Y6
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Y8



Successive Cancellation Decoder

First phase: treat a as noise, decode (uy, o, us3, Uy)

U1 __ ey (_Bbl C‘DXAW—yl
uz T D bo D XD v ¥2
u3 o | b3 D X3 V3
U4 T ] b4@ X4 1 Va
noise aj [ X5 Y5
noise a [ X6 Y6
noise as | X7 [ Y7
noise as _| X8 Y8




Successi
sES|ve Cancellation Decod
nd of first phase .

)21
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Successive Cancellation Decoder

/\

Second phase: Treat b as known, decode (us, ug, u7, Ug)

known Bl O—Iw Y1
known Bg D v y2
known 53 D 3
known /34 @ L
Us @81 | 5
Ue T D d2 ] l—6
U7 __ | 93 1 | 7
ug T | d4 | v Y8




Successive Cancellation Decoder

First phase in detall

1

Y2

y3

V4

Y5

Y6

Y7

o b1 M1
T &
| b M| X2
v, &
o— L a
b X4
T l LD
noise ai X5
noise a | X6
noise as X7
noise as _| X3

Y8
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Successive Cancellation Decoder

First copy of W™

noise ai

X5

Y1

Y5



Successive Cancellation Decoder

Second copy of W™

noise a» _

Y2

Y6



Successive Cancellation Decoder

hird copy of W™

X3

noise az _

Y3

Y7



Successive Cancellation Decoder

Fourth copy of W™

X4

noise as _|

ya

Y8



Reduction to 4 x 4

__ m D by w-  — (y1,5)
. T D2 v | (72, %)
U3 __ o | bs - 1 (3x7)
Ug T )| b4 W-— I (y47 .y8)

» Decoding the lower block us, ug, w7, ug is done similarly with a
4 x 4 block of W channels



Mutual Information in TEC

Evolution of Mutual Information in sub—channels (epsilon=0.2), (n=1)
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Mutual Information in TEC

Evolution of Mutual Information in sub—channels (epsilon=0.2), (n=2)
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Mutual Information in TEC

Evolution of Mutual Information in sub—channels (epsilon=0.2), (n=3)
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Mutual Information in TEC

Evolution of Mutual Inform

ation in sub—channels (epsilon=0.2), (n=4

Mutual Information
o
(&)}
T

Level of cascade



Mutual Information in TEC

Evolution of Mutual Information in sub—channels (epsilon=0.2), (n=5)
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Capacity of the binary erasure channel (BEC)

I[(X;Y) = H(X) - HX|Y)
= H(X)—H(X)e—0P(Y =0)—0P(Y = 1)
= (1 - e)H(X)

Picking X ~ Ber(3), we have H(X) = 1. Thus, the capacity of
BEC is (' =1 — e Capacity of the BEC with erasure probability € is
C=1-—c¢
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