Section 5
EE278: Introduction to Statistical Signal Processing (Summer 2017)
Gates B01, 3:30-4:20pm, Friday, 28/07

1. midterm exam Q4
Suppose the random variable \(Y \) is a noisy measurement of the angular position \(X \) of an antenna, so \(Y = X + Z \), where \(Z \) denotes the additive noise. Assume the noise is independent of the angular position, i.e., \(X \) and \(Z \) are independent random variables, with \(X \) uniformly distributed in the interval \([-1, 1]\) and \(Z \) uniformly distributed in the interval \([-2, 2]\).

(a) Find the MMSE (Minimum Mean Squared Error) estimate \(\hat{X}(y) \).
(b) Calculate the MSE.

2. LLSE and linear regression.
Consider a set of \(n \) pairs of numbers \(\{(x_i, y_i), i = 1, \ldots, n\} \). Linear regression is the (non-probabilistic) problem of finding a line \(z_i = \alpha x_i + \beta \) through the points that minimizes the mean square error (MSE)

\[
\epsilon_{\text{MSE}} = \sum_{i=1}^{n} (z_i - y_i)^2
\]

(a) Find the values of \(\alpha \) and \(\beta \) that minimize MSE by differentiating \(\epsilon_{\text{MSE}} \).
(b) Show that if \((x_i, y_i) \) are realizations of a pair of random variables \((X, Y) \), \(z_i \) approaches the LLSE estimator for \(Y|X = x_i \) in the limit of large \(n \).

3. Random walk with random start.
Let \(X_0 \) be a random variable with pmf

\[
p_{X_0}(x) = \begin{cases} \frac{1}{5} & x \in \{-2, -1, 0, +1, +2\} \\ 0 & \text{otherwise} \end{cases}
\]

Suppose that \(X_0 \) is the starting position of a random walk \(\{X_n : n \geq 0\} \) defined by

\[
X_n = X_0 + \sum_{i=1}^{n} Z_i,
\]

where \(\{Z_i\} \) is an i.i.d. random process with \(P(Z_1 = -1) = P(Z_1 = +1) = \frac{1}{2} \) and every \(Z_i \) is independent of \(X_0 \).

(a) Does \(X_n \) have independent increments? Justify your answer.
(b) What is the conditional pmf of \(X_0 \) given that \(X_{11} = 2 \)?