Sample Midterm Problems Solutions

1. a. Independence does not generally imply conditional independence. We can also see it from
\[E[X_1, X_2|X_3] = \text{Cov}(X_1, X_2|X_3) + E[X_1|X_3] E[X_2|X_3], \]
where the covariance term can be either positive (e.g., by letting \(X_3 = X_1 - X_2 \)), or negative (e.g., by letting \(X_3 = X_1 + X_2 \)).

b. \(\leq \). By the law of conditional variances (and conditioning both sides on \(Y \)), it follows that
\[E[\text{Var}(X|Y)] = E[\text{Var}(X|Y, Z)] + E[\text{Var}(E(X|Y, Z)|Y)]. \]
Thus \(E[\text{Var}(X|Y)] \geq E[\text{Var}(X|Y, Z)] \). This makes sense because with more observations \(Y, Z \), the MSE of the best estimate of the signal \(X \) should be less than or equal to that observing only \(Y \).

c. \(\leq \). From the previous result, it follows that
\[E[\text{Var}(X|Y, g(Y))] \leq E[\text{Var}(X|g(Y))]. \]
But \(g(Y) \) is completely determined by \(Y \), thus \(E[\text{Var}(X|Y, g(Y))] = E[\text{Var}(X|Y)]. \) This result makes sense because in general \(Y \) provides better information about the signal \(X \) than any function of it.

d. \(\geq \). First note that \(E(X^2|Z) \geq \text{Var}(X|Z) \) and \(E(Y^2|Z) \geq \text{Var}(Y|Z) \). Thus
\[E(X^2|Z) E(Y^2|Z) \geq \text{Var}(X|Z) \text{Var}(Y|Z). \]
Now, using Schwarz inequality, we obtain
\[\text{Var}(X|Z) \text{Var}(Y|Z) \geq (\text{Cov}(X, Y|Z))^2. \]
Taking expectations of both sides, we obtain
\[E[\text{Var}(X|Z) \text{Var}(Y|Z)] \geq E[(\text{Cov}(X, Y|Z))^2]. \]
But \(E[(\text{Cov}(X, Y|Z))^2] \geq [E(\text{Cov}(X, Y|Z))]^2. \)

e. \(\leq \). We use Jensen’s inequality twice and the fact that \(E(X) \leq 1 \)
\[E \left(\log_2(1 + \sqrt{X}) \right) \leq \log_2 \left(1 + E \left(\sqrt{X} \right) \right) \]
\[\leq \log_2 \left(1 + \sqrt{E(X)} \right) \]
\[\leq \log_2(1 + 1) \]
\[\leq 1. \]
f. Consider
\[
P\{(XY)^2 > 16\} \leq \frac{E[(XY)^2]}{16}, \quad \text{by Markov inequality}
\]
\[
\leq \frac{\sqrt{E(X^4)E(Y^4)}}{16}, \quad \text{by Schwarz inequality}
\]
\[
= \frac{1}{8}.
\]

2. a. First, we compute the cdf \(F_L(l)\) as follows. For \(l \in [0, 1]\),
\[
F_L(l) = P\{L \leq l\}
\]
\[
= P\{L \leq l, X \geq Y\} + P\{L \leq l, X < Y\}
\]
\[
= P\{X \leq l, X \geq Y\} + P\{1 - X \leq l, X < Y\}
\]
\[
= \frac{l^2}{2} + \frac{l^2}{2}
\]
\[
= l^2,
\]
where we have used the fact that \(X\) and \(Y\) are independent and have pdf \(U[0, 1]\). Their joint pdf is thus constant over the square \([0, 1] \times [0, 1]\). From the cdf, we get the pdf by taking the derivative,
\[
f_L(l) = 2l, \quad \text{for } l \in [0, 1].
\]
b. For \(Y = y \in (0, 1)\), we take expectation with respect to \(X\), since \(X\) and \(Y\) are independent. Thus
\[
E(L | Y = y) = \int_0^y (1 - x) \, dx + \int_y^1 x \, dx
\]
\[
= y - \frac{y^2}{2} + \frac{1}{2} - \frac{y^2}{2} = y + \frac{1}{2} - y^2.
\]
Therefore, \(E(L | Y) = \frac{1}{2} + Y - Y^2\).

3. **Wireless Channel.** To find the best linear MSE estimate of \((X_1 + X_2)\) given \(Y\), we need to compute the first and second order statistics. Consider
\[
E(X_1 + X_2) = 0,
\]
\[
E(Y) = E(H_1 X_1 + H_2 X_2 + Z) = E(H_1) E(X_1) + E(H_2) E(X_2) + E(Z) = 0,
\]
\[
\text{Var}(Y) = E[(H_1 X_1 + H_2 X_2 + Z)^2]
\]
\[
\overset{1}{=} E[(H_1 X_1)^2] + E[(H_2 X_2)^2] + 2 E(H_1 H_2 X_1 X_2) + E(Z^2)
\]
\[
= E(H_1^2) E(X_1^2) + E(H_2^2) E(X_2^2) + 2 E(H_1) E(H_2) E(X_1 X_2) + N
\]
\[
= 2P + 2P + 2\rho P + N = 2P(2 + \rho) + N,
\]
\[
\text{Cov}(X_1 + X_2, Y) = E[(X_1 + X_2)(H_1 X_1 + H_2 X_2 + Z)]
\]
\[
= E(H_1 X_1 X_2) + E(H_2 X_1 X_2) + E(H_1 X_1^2) + E(H_2 X_2^2)
\]
\[
= (E(H_1) + E(H_2)) E(X_1 X_2) + E(H_1) E(X_1^2) + E(H_2) E(X_2^2)
\]
\[
= 2P(1 + \rho),
\]
where (1) follows because \(Z \) is independent of the other random variables and thus the cross terms are equal to 0.

Thus the best linear estimate is

\[
\hat{U} = \frac{2P(1 + \rho)}{2P(2 + \rho) + N}Y.
\]

4. a. i. TRUE. \(a \) is the variance of \(X \), and thus non-negative. The strict inequality holds by assumption.

ii. NEITHER. \(b_1 \) is a covariance and can be either positive or negative.

iii. TRUE. Since \(|\Sigma| = a^2 - b_1^2 - b_2^2 > 0 \).

iv. TRUE. Since \(X \) and \(Z \) are uncorrelated and Gaussian.

v. FALSE. The joint distribution of \(X \) and \(Z \) conditioned on \(Y = y \) is Gaussian.

Using property #4 of Gaussian random vectors, the conditional covariance matrix is

\[
\text{Cov}(X, Z|Y = y) = \begin{bmatrix}
a & b_1 \\
0 & a
\end{bmatrix} - \begin{bmatrix}
b_1 \\
b_2
\end{bmatrix} a^{-1} \begin{bmatrix}
b_1 & b_2
\end{bmatrix}
\]

\[
= \begin{bmatrix}
a - b_1^2/a & -b_1 b_2/a \\
-b_1 b_2/a & a - b_2^2/a
\end{bmatrix},
\]

which has non-zero off-diagonal elements. We conclude that \(X \) and \(Z \) are correlated given \(Y \), and thus not independent.

b. The best estimate of \(X \) given \(Y \) is

\[
\hat{X} = \text{E}(X|Y) = \frac{b_1}{a} Y.
\]

Thus we can write \([\hat{X} \ Z]^T \) as a linear transformation of \([Y \ Z]^T \) as

\[
[\hat{X} \ Z] = \begin{bmatrix}
b_1/a & 0 \\
0 & 1
\end{bmatrix} [Y \ Z].
\]

The transformed covariance matrix is

\[
\begin{bmatrix}
b_1/a & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
a & b_2 \\
b_2 & a
\end{bmatrix} \begin{bmatrix}
b_1/a & 0 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
b_1^2/a & b_1 b_2/a \\
b_1 b_2/a & a
\end{bmatrix}.
\]

Thus,

\[
[\hat{X} \ Z] \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix}
b_1^2/a & b_1 b_2/a \\
b_1 b_2/a & a
\end{bmatrix} \right).
\]

5. Two coins.

a. Since \(p_\Theta(1) = p_\Theta(2) = 1/2 \), the maximum likelihood decoder minimizes the probability of error. The conditional pmf of \((X_1, X_2) \) given \(\Theta = 1 \) is equal to:

\[
P \{X_1 = x_1, X_2 = x_2|\Theta = 1\} = P \{X_1 = x_1|\Theta = 1\} P \{X_2 = x_2|\Theta = 1\} = \frac{1}{4}.
\]
To derive the conditional pmf of \((X_1, X_2)\) given \(\Theta = 2\) we apply the law of total probability and the conditional independence assumption:

\[
P \{ X_1 = x_1, X_2 = x_2 | \Theta = 2 \} = \int_{u=0}^{1} f_P(p) p_{X_2|P}(x_2 | u) \, du
\]

Evaluating this expression, we obtain:

\[
P \{ X_1 = 1, X_2 = 1 | \Theta = 2 \} = \int_{u=0}^{1} u^2 \, du = \frac{1}{3},
\]

\[
P \{ X_1 = 0, X_2 = 0 | \Theta = 2 \} = \int_{u=0}^{1} (1 - u)^2 \, du = \frac{1}{3},
\]

\[
P \{ X_1 = 1, X_2 = 2 | \Theta = 2 \} = \int_{u=0}^{1} u (1 - u) \, du = \frac{1}{6}.
\]

As a result, by the maximum likelihood criterion, the detection rule is to choose \(\Theta = 2\) if the flips are the same (i.e., \(X_1 = X_2\)) and \(\Theta = 1\) if they are different.

b. The event of an error occurring for the detection rule derived in the previous part can be decomposed into two disjoint events: the flips being the same if \(\Theta = 1\) and the flips being different if \(\Theta = 2\). We compute the probability of these events and add them to obtain the probability of error:

\[
P \{ X_1 = X_2, \Theta = 1 \} = p_\Theta (1) P \{ X_1 = X_2 | \Theta = 1 \} = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{4} \right) = \frac{1}{4},
\]

\[
P \{ X_1 \neq X_2, \Theta = 2 \} = p_\Theta (2) P \{ X_1 \neq X_2 | \Theta = 1 \}
\]

\[
= \frac{1}{2} \cdot 2 P \{ X_1 = 1, X_2 = 2 | \Theta = 2 \} = \frac{1}{6}.
\]

Hence,

\[
P_e = \frac{5}{12}.
\]