Review Session #2 Solutions

1. *Random phase signal.* Let \(Y(t) = \sin(\omega t + \Theta) \) be a sinusoidal signal with random phase \(\Theta \sim U[-\pi, \pi] \). Find the pdf of the random variable \(Y(t) \) for fixed values of time \(t \) and radial frequency \(\omega \). Comment on the dependence of the pdf of \(Y(t) \) on time \(t \).

Solution

The general formula for calculating the pdf of a differentiable function of a continuous random variable is given in the lecture notes:

\[
 f_Y(y) = \sum_{\theta_k: f_{\Theta}(\theta_k) = y} \frac{f_{\Theta}(\theta)}{|dy/d\theta|_{\theta=\theta_k}}.
\]

We can apply that general formula to this special case. Here \(f_{\Theta}(\theta) = \frac{1}{2\pi}, \ -\pi \leq \theta \leq \pi \).

\[
 dy \over d\theta = \cos(\omega t + \theta).
\]

For \(y \in [-1, 1] \), there are two solutions to the equation \(y = \sin(\omega t + \theta) \) with \(\theta \in [-\pi, \pi] \). (Actually, there are two points where there is only one solution (\(y = \pm 1 \)) and one point where there are three (\(y = 0 \). We ignore these points since their probability is zero.) When \(y \) is plotted as a function of \(\theta \), it is apparent that the slopes at the two solutions do not depend on the phase shift \(\omega t \) (also \(f_{\Theta}(\theta) \) is uniform). Thus without loss of generality, we can take \(\omega t = 0 \), which gives the two solutions: \(\theta_1 = \arcsin y \) and \(\theta_2 = \pi - \theta_1 \). Thus,

\[
 \left| \frac{dy}{d\theta} \right|_{\theta_1} = \left| \frac{dy}{d\theta} \right|_{\theta_2} = \cos(\arcsin y) = \sqrt{1 - y^2}.
\]

Using the general formula for \(f_Y(y) \), we get

\[
 f_Y(y) = \frac{1}{2\pi} \left(\frac{1}{\sqrt{1-y^2}} + \frac{1}{\sqrt{1-y^2}} \right) = \begin{cases} \frac{1}{\pi \sqrt{1 - y^2}} & |y| < 1 \\ 0 & |y| > 1 \end{cases}
\]

Note that \(f_Y(y) \) does not depend on time \(t \), that is, \(Y(t) \) is time invariant (or stationary). (More on this later in the course.)

2. *Joint cdf or not.* Consider the function

\[
 G(x, y) = \begin{cases} 1 & \text{if } x + y \geq 0 \\ 0 & \text{otherwise.} \end{cases}
\]

Can \(G \) be a joint cdf for a pair of random variables? Justify your answer.

Solution

No. Note that for every \(x \),
\[
\lim_{y \to \infty} G(x, y) = 1.
\]

But for any genuine marginal cdf,

\[
\lim_{x \to -\infty} F_X(x) = 0 \neq 1.
\]

Therefore \(G(x, y)\) is not a cdf. Alternatively, assume that \(G(x, y)\) is a joint cdf for \(X\) and \(Y\), then

\[
P\{-1 < X \leq 2, -1 < Y \leq 2\} = G(2, 2) - G(-1, 2) - G(2, -1) + G(-1, -1)
\]

\[
= 1 - 1 - 1 + 0 = -1.
\]

But this violates the property that the probability of any event must be nonnegative.

3. \textit{Max to Min ratio}. Let \(X_1\) and \(X_2\) be two independent random variables, each uniformly distributed between 0 and 1, i.e., \(X_i \sim U[0, 1]\). Find and sketch the cdf of

\[
Y = \max(X_1, X_2) / \min(X_1, X_2).
\]

\textbf{Solution}

Since \(X_1 \sim U[0, 1]\) and \(X_2 \sim U[0, 1]\) are independent, their joint pdf is uniform over the square \(0 \leq x_1, x_2 \leq 1\). The cdf of \(Y\) can be found graphically by calculating the area of the region where \(Y \leq y\), as shown in Figure 1 on page 2.

![Diagram of the region for Y.](image)

Figure 1: Shaded region corresponds to \(Y = \max\{X_1, X_2\} / \min\{X_1, X_2\} \leq y\).
To see this more clearly, consider \(F_Y(y) \) for \(y \geq 1 \):

\[
F_Y(y) = P \left\{ \max \{X_1, X_2\} \leq y \right\} \\
= P \left\{ \min \{X_1, X_2\} \geq \frac{\max \{X_1, X_2\}}{y} \right\} \\
= P \left\{ X_2 \geq \frac{X_1}{y}, \ X_2 \leq X_1 \right\} + P \left\{ X_1 \geq \frac{X_2}{y}, \ X_1 < X_2 \right\} \\
= P \left\{ \frac{X_1}{y} \leq X_2 \leq X_1 \right\} + P \left\{ \frac{X_2}{y} \leq X_1 < X_2 \right\} \\
= 2P \left\{ \frac{X_1}{y} \leq X_2 \leq X_1 \right\} \quad \text{(by symmetry)} \\
= 2 \cdot \frac{1}{2} \cdot 1 \cdot \left(1 - \frac{1}{y} \right) = \frac{y}{1-y}.
\]

Clearly \(F_Y(y) = 0 \) for \(y < 1 \). Note that \(f_Y(y) = 1/y^2 \) for \(y \geq 1 \).

4. **First available teller.** A bank has two tellers. The service times for tellers 1 and 2 are independent exponential random variables \(X_1 \sim \text{Exp}(\lambda_1) \) and \(X_2 \sim \text{Exp}(\lambda_2) \), respectively. You arrive at the bank and find that both tellers are busy but nobody else is waiting to be served. You are served by the first available teller once he/she is free. What is the probability that you are served by the teller 1?

Solution

The tellers’ service times are exponentially distributed, hence memoryless. Thus the service time distribution does not depend on my arrival time. The probability that I will be served by the first teller is

\[
P\{X_1 < X_2\} = \int_0^\infty \int_{x_1}^\infty \lambda_1 e^{-\lambda_1 x_1} \lambda_2 e^{-\lambda_2 x_2} \, dx_2 \, dx_1 \\
= \int_0^\infty \lambda_1 e^{-(\lambda_1+\lambda_2)x_1} \, dx_1 = \frac{\lambda_1}{\lambda_1 + \lambda_2}.
\]

In other words, the probability of being served first by teller \(i \) is proportional to the teller’s service rate \(\lambda_i \).

5. **Correlation and independence.** Give a counterexample of this statement: “If random variables \(X \) and \(Y \) are uncorrelated then they are independent.”

Solution

Let \(X \sim U[-1, 1] \) and \(Y = X^2 \). One can see that \(E(XY) = E(X^3) = 0 = E(X)E(Y) \), which means that \(X \) and \(Y \) are uncorrelated. However, clearly \(X \) and \(Y \) are not independent because \(Y \) is a function of \(X \).

6. **Radar signal detection.** The received signal \(S \) for a radar channel is 0 if there is no target and a random variable \(X \sim \mathcal{N}(0, P) \) if there is a target. Both possibilities occur with equal
probability. Thus
\[S = \begin{cases}
0 & \text{with probability } \frac{1}{2} \\
X \sim \mathcal{N}(0, P) & \text{with probability } \frac{1}{2}.
\end{cases} \]

The radar receiver observes \(Y = S + Z \), where the noise \(Z \sim \mathcal{N}(0, N) \) is independent of \(S \). Find the optimal decoder for deciding whether \(S = 0 \) or \(S = X \) and its probability of error. Give your answer in terms of intervals of \(y \) and express the boundary points of the intervals in terms of \(P \) and \(N \).

Hint: You can cast this detection problem in the form discussed in class by defining the signal \(\Theta \) to be 0 if \(S = 0 \) and 1 if \(S = X \).

Solution

To cast this problem as a standard detection problem, we define a random variable \(\Theta \) by
\[\Theta = \begin{cases}
0 & \text{if } S = 0 \\
1 & \text{if } S = X
\end{cases} \]

Then \(p_\Theta(0) = p_\Theta(1) = \frac{1}{2} \). The optimal decoder \(\hat{\Theta}(\cdot) \) for \(\Theta \) uses the MAP rule: i.e., set \(\hat{\Theta}(y) = \theta \) where \(\theta \) maximizes the conditional pmf \(p_{\Theta|Y}(\theta|y) \). By Bayes rule,
\[p_{\Theta|Y}(\theta|y) = \frac{f_{Y|\Theta}(y|\theta)p_\Theta(\theta)}{f_Y(y)} \Rightarrow \hat{\Theta}(y) = \begin{cases}
1 & \text{if } \frac{f_{Y|\Theta}(y|1)}{f_{Y|\Theta}(y|0)} > 1 \\
0 & \text{otherwise}
\end{cases} \]

The likelihood ratio can be written
\[\frac{f_{Y|\Theta}(y|1)}{f_{Y|\Theta}(y|0)} = \frac{1}{\sqrt{2\pi(P+N)}} e^{-\frac{y^2}{2(P+N)}} \cdot \frac{1}{\sqrt{2\pi N}} e^{-\frac{y^2}{2N}} = \sqrt{\frac{N}{P+N}} e^{y^2(\frac{P}{P+N})}, \]

hence
\[\frac{f_{Y|\Theta}(y|1)}{f_{Y|\Theta}(y|0)} > 1 \Leftrightarrow \sqrt{\frac{N}{P+N}} e^{y^2(\frac{P}{P+N})} > 1 \Leftrightarrow y^2 > \frac{(P+N)N}{P} \ln \left(\frac{P+N}{N} \right). \]

Thus the MAP decision rule becomes
\[\hat{\Theta}(y) = \begin{cases}
0 & |y| \leq \sqrt{\frac{(P+N)N}{P} \ln \left(\frac{P+N}{N} \right)} \\
1 & \text{otherwise}
\end{cases} \]

To find the error probability, define \(\tau = \sqrt{\frac{(P+N)N}{P} \ln \left(\frac{P+N}{N} \right)} \). Then
\[P_e = P\{\hat{\Theta}(Y) \neq \Theta\} \]
\[= P\{\Theta(Y) = 1, \Theta = 0\} + P\{\hat{\Theta}(Y) = 0, \Theta = 1\} \]
\[= P\{|Y| \geq \tau, \Theta = 0\} + P\{|Y| < \tau, \Theta = 1\} \]
\[= p_\Theta(0) \left(\int_{-\infty}^{-\tau} f_{Y|\Theta}(y|0) \, dy + \int_{\tau}^{\infty} f_{Y|\Theta}(y|0) \, dy \right) + p_\Theta(1) \int_{-\tau}^{\tau} f_{Y|\Theta}(y|1) \, dy \]
\[= \frac{1}{2} \left(2 \int_{\tau}^{\infty} f_{Y|\Theta}(y|0) \, dy + \int_{-\tau}^{\tau} f_{Y|\Theta}(y|1) \, dy \right) \]
\[= \frac{1}{2} \left(2Q\left(\frac{\tau}{\sqrt{N}}\right) + \left(1 - 2Q\left(\frac{\tau}{\sqrt{P+N}}\right) \right) \right) \]
\[= Q\left(\sqrt{\frac{(P+N)}{P}} \ln \left(\frac{P+N}{N} \right) \right) + \frac{1}{2} - Q\left(\sqrt{\frac{N}{P}} \ln \left(\frac{P+N}{N} \right) \right). \]

In Figure 2 on page 5, the pdfs of noise and signal + noise intersect at ±\(\tau\). The decision region for "no signal" is the interval \([-\tau, +\tau]\). The error probability is the average of the probabilities of the tail of the noise and of the central region of signal + noise. In the example shown in Figure 2, SNR = 4 and \(P_e = 0.1780\).

Figure 2: PDFs of noise (\(N = 1\)) and radar signal + noise (\(P + N = 4\)).

7. **Mean-square inequality.** Let \(X\) and \(Y\) be random variables with finite means and variances. Show that
\[P\{|X - Y| > \epsilon\} \leq \frac{E((X - Y)^2)}{\epsilon^2}. \]
Solution

Use the Markov inequality with $a = \frac{\epsilon^2}{E((X - Y)^2)}$:

$$P\{|X - Y| \geq \epsilon\} = P\{(X - Y)^2 \geq a \cdot E((X - Y)^2)\} \leq \frac{1}{a} = \frac{E((X - Y)^2)}{\epsilon^2}.$$