Review Session #3

1. **Independence vs. Conditional Independence** Give an example of random variables $X, Y,$ and Z where $f_{X,Z}(x,z) = f_X(x)f_Z(z)$ but $f_{X,Z|Y}(x,z|y) \neq f_{X|Y}(x|y)f_{Z|Y}(z|y)$ i.e. independence does not imply conditional independence.

2. **Sum and difference.** Let X and Y be two random variables, and define $U = X - Y$ and $V = X + Y$. Find the minimum MSE linear estimate of V given U as a function of the random variables and $E(X)$, $E(Y)$, σ_X, σ_Y, $\rho_{X,Y}$, where $\sigma_X = \sqrt{\text{Var}(X)}$, $\rho_{X,Y} = \text{corr}(X,Y)$.

3. **Covariance matrices.** Which of the following matrices can be a covariance matrix? Justify your answer. Either construct a random vector X with the given covariance matrix as a function of the i.i.d. zero mean unit variance random variables Z_1, Z_2, Z_3, or establish a contradiction as was done in lecture.

 (a) \[
 \begin{bmatrix}
 1 & 2 \\
 0 & 2
 \end{bmatrix}
 \]

 (b) \[
 \begin{bmatrix}
 2 & 1 \\
 1 & 2
 \end{bmatrix}
 \]

 (c) \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 1 & 2 & 2 \\
 1 & 2 & 3
 \end{bmatrix}
 \]

 (d) \[
 \begin{bmatrix}
 1 & 1 & 2 \\
 1 & 2 & 3 \\
 2 & 3 & 3
 \end{bmatrix}
 \]

4. **Conditional Independence does not imply Independence.** In class, we saw an example in which two independent, identically distributed random variables conditioned on a third random variable were no longer independent. Here, we examine an example of the opposite case: is it possible for conditionally independent random variables to be not independent?

 Suppose $X_3 \sim U[0,1]$, and given X_3: $X_1, X_2 \overset{i.i.d.}{\sim} \text{Bern}(X_3)$. Show that X_1, X_2 are not independent, although they are conditionally independent given X_3 as given. Work out the joint distribution P_{X_1, X_2}.

 Hint: the Beta function is $B(x,y) = \int_0^1 t^{x-1}(1-t)^{y-1}dt$.

5. **Additive-noise channel with path gain.** Consider the output Y of an additive-noise channel with path gain, where X and Z are zero mean and uncorrelated, and a and b are constants. Find the MMSE linear estimate of X given Y and its MSE in terms only of σ_X, σ_Z, a and b.

 ![Channel for problem 5](image.png)