1. **Poisson Processes.** Consider two independent Poisson processes $N_1(t), N_2(t)$ with the same rate λ. Define the process $N(t) = N_1(t) - N_2(t)$, and we’ll refer to $N_1(t)$ as the “arrivals” process, and $N_2(t)$ as the “departures” process.

 a. Draw, on the same plot, a typical sample path of $N_1(t)$ and $N_2(t)$.

 b. For the above sample paths, draw the corresponding sample paths of $N(t)$ and, for comparison, the sample path of process $N_1(t) + N_2(t)$.

 c. Is $N(t)$ an independent increment process? Justify your answer.

 d. Find the distribution of T_1, the time of the first change (arrival or departure) of the process $N(t)$. (Hint: the probability $P(T_1 \geq t)$ can be interpreted as the probability that at time t there have not yet been any arrivals nor departures.)

 e. Find the mean and autocorrelation functions of $N(t)$.

 f. Find the MMSE linear estimator of $N(t)$ based on the sample $N(t_1)$ when:

 i. $t < t_1$

 ii. $t > t_1$

Solution

a. Plot should contain two non-identical Poisson process trajectories.

b. $N(t)$ should take discrete, real values (can be negative and/or zero) corresponding to changes in $N_1(t)$ relative to $N_2(t)$, and vice versa. $N_1(t) + N_2(t)$ should be monotonically increasing, and takes on discrete positive values corresponding to changes in $N_1(t)$ relative to $N_2(t)$, and vice versa.

c. Yes, $N(t)$ is an independent increment process. This can be seen using the following arguments:

 • If $X(t)$ is an independent increment random process, then $-X(t)$ is also an independent increment process.

 • The sum of two independent increment processes $X_1(t), X_2(t)$ is also an independent increment process.

 • Finally,

 $$P(X_1(t_b) - X_2(t_b) - X_1(t_1) - X_2(t_a)|X_1(t_a), X_2(t_a))$$

 $$\leftrightarrow P(X_1(t_b) - X_2(t_b) - X_1(t_1) - X_2(t_a)|X_1(t_a) - X_2(t_a))$$

 since $X_1(t_a) - X_2(t_a)$ is a function of $X_1(t_1), X_2(t_1)$, and if a random variable is independent of another random variable, then the random variable is also independent of a function of the other random variable.
Alternatively, the independent increment process may be seen through writing
the distribution of \(N(t) \):

\[
P(N(t_2) - N(t_1) = n) = P((N_1(t_2) - N_1(t_1)) - (N_2(t_2) - N_2(t_1)) = n)
\]

\[
= \sum_m P((N_1(t_2) - N_1(t_1)) = m + n)(N_2(t_2) - N_2(t_1)) = m) \times
P((N_2(t_2) - N_2(t_1)) = m)
\]

\[
= \sum_m P((N_1(t_2) - N_1(t_1)) = m + n)P((N_2(t_2) - N_2(t_1)) = m)
\]

\[
= \sum_m e^{-\lambda(t_2-t_1)}[\lambda(t_2 - t_1)]^{n+m} e^{-\lambda(t_2-t_1)}[\lambda(t_2 - t_1)]^m
(n-m)! (m)!
\]

which depends only on the current time interval \(t_2 - t_1 \), so \(N(t) \) is an independent increment process.

d. Using the hint, we write:

\[
P(T_1 \geq t) = P(N_1(t) = 0, N_2(t) = 0) = P(N_1(t) = 0)P(N_2(t) = 0)
\]

since \(N_1(t), N_2(t) \) independent

\[
= e^{-2\lambda t} \text{ since } N_1(t), N_2(t) \text{ have same rate } \lambda,
\]

which we use to find the CDF of \(T_1 \) as

\[
F_{T_1}(t) = P(T_1 \leq t)
= 1 - P(T_1 \geq t)
= 1 - e^{-2\lambda t}.
\]

Now we can find the distribution of \(T_1 \) as

\[
f_{T_1}(t) = \frac{d}{dt} F_{T_1}(t)
= 2\lambda e^{-2\lambda t},
\]

i.e. \(T_1 \) is distributed as an exponential random variable with parameter \(2\lambda \).

e. The mean function of \(N(t) \) is

\[
\mu_N(t) = E[N(t)]
= E[N_1(t) - N_2(t)]
= E[N_1(t)] - E[N_2(t)]
= 0
\]

since \(N_1(t), N_2(t) \) are i.i.d. Poisson random processes.
The autocorrelation function of $N(t)$ is
\[
R_N(t_1, t_2) = E[(N_1(t_1) - N_2(t_1))(N_1(t_2) - N_2(t_2))]
\]
\[
= E[N_1(t_1)N_1(t_2)] + E[N_2(t_1)N_2(t_2)] - E[N_2(t_1)]E[N_1(t_2)] - E[N_1(t_1)]E[N_2(t_2)]
\]
\[
= 2(\lambda \min\{t_1, t_2\} + \lambda^2 t_1 t_2) - 2\lambda^2 t_1 t_2
\]
\[
= 2\lambda \min\{t_1, t_2\},
\]
where the third equality follows from the autocorrelation function of a Poisson process with rate λ derived in lecture.

f. The LMMSE estimator of $N(t)$ based on sample $N(t_1)$ is of course
\[
\hat{N}(t) = \frac{\text{Cov}(N(t),N(t_1))}{\text{Var}(N(t_1))}N(t_1)
\]
\[
= \frac{R_N(t, t_1)}{R_N(t_1, t_1)}N(t_1)
\]
\[
= \frac{\min\{t, t_1\}}{t_1}N(t_1)
\]

since $\mu_N(t) = 0$. So, the LMMSE estimators for the different cases are
i. $t < t_1$: $\hat{N}(t) = \frac{t}{t_1}N(t_1)$
ii. $t > t_1$: $\hat{N}(t) = N(t_1)$

2. **Stationary Gauss-Markov process.** Consider the following variation on the Gauss-Markov process:

\[
X_0 \sim N(0, a)
\]
\[
X_n = \frac{1}{2}X_{n-1} + Z_n, \quad n \geq 1,
\]
where Z_1, Z_2, Z_3, \ldots are i.i.d. $N(0, 1)$, independent of X_0.

a. Find the mean and autocorrelation functions of X_n.
b. Find a such that X_n is wide sense stationary.

Solution

a. Using the method of lecture notes 6, we can easily verify that $E(X_n) = 0$ for every n and that
\[
R_X(n_1, n_2) = E(X_{n_1}X_{n_2}) = 2^{-|n_1-n_2|}\left[\frac{4}{3} + \left(\frac{1}{4}\right)^{\max(n_1,n_2)} \left(a - \frac{4}{3}\right)\right].
\]
b. We are asked to find a such that $R_X(n_1, n_2)$ depends only on $n_1 - n_2$. Thus $a = \frac{4}{3}$.

Alternatively, for X_n to be wide sense stationary, $E(X^2_n)$ must be independent of n. Thus
\[
E(X^2_n) = \frac{1}{3} E(X^2_{n-1}) + E(Z^2_n) + E(X_{n-1}Z_n) = \frac{1}{3} E(X^2_n) + 1.
\]
Therefore, $a = E(X_0^2) = E(X_n^2) = \frac{4}{3}$.

3. **Sawtooth process.** Let $X(t) = g(t-T)$, where $g(t)$ is the periodic triangular waveform shown in Figure 1 and the delay T is a random variable with $T \sim U[0, 1]$.

Is $X(t)$ a strict-sense stationary random process? Justify your answer.

Solution

By definition, $X(t)$ is stationary if the joint distribution of any set of samples does not depend on the placement of the time origin. This means that the joint cdf of $X(t_1), \ldots, X(t_k)$ is the same as that of $X(t_1 + \tau), \ldots, X(t_k + \tau)$, for all t_1, t_2, \ldots, t_k and all τ. First we show that the first-order cdf of $X(t)$ is independent of time. If $0 \leq x \leq 1$, then

$$F_{X(t)}(x) = P\{X(t) \leq x\} = P\{g(t - \Delta) \leq x\}$$

$$= \int_0^1 P\{g(t - \Delta) \leq x \mid \Delta = \tau\} f_\Delta(\tau) d\tau$$

$$= \int_0^1 P\{g(t - \Delta) \leq x \mid \Delta = \tau\} d\tau$$

$$= \int_0^1 P\{g(t - \tau) \leq x\} d\tau \quad \text{since } g(t) \text{ has period 1}$$

$$= \int_0^1 P\{g(\tau) \leq x\} d\tau = \int_0^1 P\{(1 - \tau) \leq x\} d\tau$$

$$= \int_0^1 P\{\tau \geq 1 - x\} d\tau = \int_{1-x}^1 1 d\tau = 1 - (1 - x) = x.$$

In other words, $X(t)$ is uniformly distributed between 0 and 1 for every t.

To show that higher order distributions are time invariant, note that $g(t)$ can be expressed in terms of a given $g(t_1)$ as $g(t) = (g(t_1) - (t - T)) \mod 1$, where $a \mod b = a - b\lfloor a/b \rfloor$. Thus, given $X(t_1) = x_1$, the sample function of the process is determined
unambiguously, and its values at t_2, t_3, \ldots, t_k depend only on the relative positions of the t_i's. Thus $X(t)$ is strict-sense stationary.

4. *Windowed Poisson process.* Let $N(t)$, for $t \geq 0$, be a Poisson process with rate $\lambda > 0$, and let $X(t)$, for $t \geq 0$, be defined by $X(t) = N(t + 1) - N(t)$. Thus, $X(t)$ is the number of events of N during the time window $(t, t + 1]$.

a. Sketch a typical sample path of N, and the corresponding sample path of X.

b. Find the mean function $\mu_X(t)$, for $t \geq 0$ and the autocorrelation function $R_X(t_1, t_2)$ for $t_1, t_2 \geq 0$. Express your answer in a simple form.

c. Is X a Markov process? Why or why not?

Solution

a. An example with $\lambda = 1$ is shown in the figure below.

![Graph of N(t) and X(t)](image-url)

![Graph of X(t)](image-url)
b. We can compute the mean function as follows

\[\mu_X(t) = E[X(t)] = E[N(t + 1)] - E[N(t)] = \lambda(t + 1) - \lambda t = \lambda. \]

The autocorrelation function is

\[R_X(t_1, t_2) = E[X(t_1)X(t_2)] = E[(N(t_1 + 1) - N(t_1))(N(t_2 + 1) - N(t_2))] \]

\[= R_N(t_1 + 1, t_2 + 1) - R_N(t_1 + 1, t_2) - R_N(t_1, t_2 + 1) + R_N(t_1, t_2) \]

\[= \lambda(\min\{t_1 + 1, t_2 + 1\} - \min t_1 + 1, t_2 - \min\{t_1, t_2 + 1\} + \min\{t_1, t_2\}) \]

\[+ \lambda^2((t_1 + 1)(t_2 + 1) - (t_1 + 1)t_2 - t_1(t_2 + 1) + t_1t_2) \]

\[= \begin{cases} \lambda(1 - |t_1 - t_2|) + \lambda^2 & \text{if } |t_1 - t_2| \leq 1, \\ \lambda^2 & \text{otherwise.} \end{cases} \]

where the last step can be seen by considering the four cases

\[t_1 \in [0, t_2 - 1), \]

\[t_1 \in [t_2 - 1, t_2), \]

\[t_1 \in [t_2, t_2 + 1), \quad \text{and} \]

\[t_1 \in [t_2 + 1, \infty) \]

one by one and computing the min terms for each of them. \textbf{Remark:} Since \(\mu_X(t) \) does not depend on \(t \) and \(R_X(t_1, t_2) \) depends only on \(|t_1 - t_2| \), it follows that \(X(t) \) is WSS.

c. \(X(t) \) is not a Markov process. To prove this, we need to find times \(t_1 < t_2 < t_3 \) and values \(x_1, x_2, x_3 \) such that

\[P\{X(t_3) = x_3 \mid X(t_2) = x_2, X(t_1) = x_1\} \neq P\{X(t_3) = x_3 \mid X(t_2) = x_2\}. \quad (1) \]

There are several choices that work. We will use \(t_1 = 0, t_2 = 0.5, t_3 = 1.0, \) and \(x_1 = 0, x_2 = 1, x_3 = 0. \) Define the random variables

\[A = N(0.5) - N(0), \]

\[B = N(1.0) - N(0.5), \]

\[A = N(1.5) - N(1.0), \]

\[A = N(2.0) - N(1.5), \]

each of which is Poisson-distributed with mean \(\lambda/2 \). The four random variables are independent from each other since the time intervals do not overlap. The
right hand side of (1) is then
\[
P\{C + D = 0 \mid B + C = 1\} = \frac{P\{C = 0, D = 0, B + C = 1\}}{P\{B + C = 1\}}
= \frac{P\{C = 0, D = 0, B = 1\}}{P\{B + C = 1\}}
= \frac{P\{C = 0\}P\{D = 0\}P\{B = 1\}}{P\{B + C = 1\}}
= \frac{\lambda/2e^{-(3/2)\lambda}}{\lambda e^{-\lambda}}
= \frac{1}{2}e^{-\lambda/2}.
\]

The left hand side of (1) is
\[
P\{C + D = 0 \mid B + C = 1, A + B = 0\} = P\{C = 0, D = 0 \mid A = 0, B = 0, C = 1\}
= 0
\]
which is different from the right hand side for every \(\lambda\). Therefore, the process \(X(t)\) is not a Markov process for any \(\lambda\).

5. Modified telegraph process. Let \(X(t), Y(t),\) and \(W(t)\) be independent random processes; \(X(t)\) and \(Y(t)\) are zero-mean stationary Gaussian processes with \(R_X(\tau) = R_Y(\tau) = e^{-|\tau|}\). \(W(t)\) is the random telegraph process,
\[
W(t) = A(-1)^{N(t)},
\]
where \(N(t)\) is a Poisson process with parameter \(\lambda\), and the random variable
\[
A = \begin{cases}
1 & \text{with probability } 0.5 \\
-1 & \text{with probability } 0.5.
\end{cases}
\]

\(A\) and \(N(t)\) are independent. Now define the new process \(Z(t)\) as
\[
Z(t) = \begin{cases}
X(t) & \text{if } W(t) = 1 \\
Y(t) & \text{if } W(t) = -1.
\end{cases}
\]
a. Find the first order distribution of \(Z(t)\).
b. Is \(Z(t)\) a Gaussian random process? Justify your answer.
c. Is \(Z(t)\) WSS? Justify your answer.

Solution

a. We know that
\[
Z(t) = \begin{cases}
X(t) & \text{if } W(t) = +1 \\
Y(t) & \text{if } W(t) = -1.
\end{cases}
\]
We can write
\[
P\{Z(t) \leq z\} = P\{W(t) = +1\}P\{Z(t) \leq z | W(t) = +1\} \\
+ P\{W(t) = -1\}P\{Z(t) \leq z | W(t) = -1\} \\
= \frac{1}{2}(P\{X(t) \leq z | W(t) = +1\} + P\{Y(t) \leq z | W(t) = -1\}) \\
= \frac{1}{2}(\phi(z) + \phi(z)) \\
= \phi(z),
\]
where we have used the fact that \(X(t)\) and \(Y(t)\) are independent of \(W(t)\), and where \(\phi\) is the cdf of the normal distribution. Thus, \(Z(t) \sim \mathcal{N}(0, 1)\), independent of \(t\).

b. We consider the joint distribution of two samples \(Z(t_1)\) and \(Z(t_2)\), where \(t_1 < t_2\). Their joint cdf is
\[
P\{Z(t_1) \leq z_1, Z(t_2) \leq z_2\} \\
= \sum_{w_1, w_2 \in \{+1, -1\}} P\{W(t_1) = w_1, W(t_2) = w_2\} \\
\cdot P\{Z(t_1) \leq z_1, Z(t_2) \leq z_2 | W(t_1) = w_1, W(t_2) = w_2\}. \tag{1}
\]
If \(Z(t_1)\) and \(Z(t_2)\) are from the same process (either both from \(X(t)\) or both from \(Y(t)\)), then their joint distribution is
\[
\begin{bmatrix} Z(t_1) \\ Z(t_2) \end{bmatrix} \mid \{W(t_1) = W(t_2)\} \sim \mathcal{N} \left(\begin{bmatrix} 0, & 1 \\ -e^{-(t_2-t_1)}, & 1 \end{bmatrix} \right), \tag{2}
\]
where we have used the autocorrelation function of \(X(t)\) and \(Y(t)\). If they are from different processes (one from \(X(t)\) and one from \(Y(t)\)), then their joint distribution is
\[
\begin{bmatrix} Z(t_1) \\ Z(t_2) \end{bmatrix} \mid \{W(t_1) = W(t_2)\} \sim \mathcal{N} \left(\begin{bmatrix} 0, & 0 \\ 0, & 1 \end{bmatrix} \right), \tag{3}
\]
since \(X(t)\) and \(Y(t)\) are independent. Let \(\Phi_1\) be the cdf of (2), and \(\Phi_2\) the cdf of (3). Substituting into (1), the joint cdf of \(Z(t_1)\) and \(Z(t_2)\) is
\[
P\{Z(t_1) \leq z_1, Z(t_2) \leq z_2\} \\
= P\{W(t_1) = W(t_2)\} \Phi_1(z_1, z_2) + P\{W(t_1) \neq W(t_2)\} \Phi_2(z_1, z_2) \\
= \frac{1 + e^{-2\lambda(t_2-t_1)}}{2} \Phi_1(z_1, z_2) + \frac{1 - e^{-2\lambda(t_2-t_1)}}{2} \Phi_2(z_1, z_2)
\]
since \(W(t_1) = W(t_2)\) only when the number of events \(N(t_2) - N(t_1)\) in interval \((t_1, t_2]\) is even, and \(W(t_1) \neq W(t_2)\) only when the number of events \(N(t_2) - N(t_1)\) in interval \((t_1, t_2]\) is odd, and the probability for each those cases is a Taylor series that converges, respectively, to hyperbolic cosine and sine functions. Taking a linear combination of two different Gaussian cdfs does not result in a Gaussian
cdf. (This is different from taking a linear combination of two Gaussian random variables.) Hence, the joint distribution of \(Z(t_1) \) and \(Z(t_2) \) is not Gaussian, and \(Z(t) \) is not a GRP.

c. It follows from part (a) that the mean and variance of \(Z(t) \) are independent of \(t \). To decide whether \(Z(t) \) is WSS, we only need to compute the correlation function \(R_Z(t_1, t_2) \). In part (b), we already computed the joint distribution of \(Z(t_1) \) and \(Z(t_2) \) for \(t_1 < t_2 \). The joint pdf is

\[
f_{Z(t_1), Z(t_2)}(z_1, z_2) = c_1 \phi_1(z_1, z_2) + c_2 \phi_2(z_1, z_2),
\]

where

\[
c_1 = \frac{1 + e^{-2\lambda (t_2 - t_1)}}{2},
\]

\[
c_2 = \frac{1 - e^{-2\lambda (t_2 - t_1)}}{2},
\]

\[
\phi_1(z_1, z_2) = \mathcal{N}\left(0, \begin{bmatrix} 1 & e^{-(t_2-t_1)} \\ e^{-(t_2-t_1)} & 1 \end{bmatrix}\right),
\]

\[
\phi_2(z_1, z_2) = \mathcal{N}\left(0, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right).
\]

The correlation function is

\[
R_Z(t_1, t_2) = E[Z(t_1)Z(t_2)] = \int \int z_1 z_2 f_{Z(t_1), Z(t_2)}(z_1, z_2) \, dz_1 \, dz_2
\]

\[
= c_1 \int \int z_1 z_2 \phi_1(z_1, z_2) \, dz_1 \, dz_2 + c_2 \int \int z_1 z_2 \phi_2(z_1, z_2) \, dz_1 \, dz_2
\]

\[
= c_1 e^{-(t_2-t_1)} + c_2 \cdot 0
\]

\[
= \frac{1 + e^{-2\lambda (t_2-t_1)}}{2} e^{-(t_2-t_1)}
\]

This is a function only of \(t_2 - t_1 \), not of \(t_1 \) and \(t_2 \) individually. Thus \(Z(t) \) is WSS.

6. **Generating a random process with a prescribed PSD.** The power spectral density \(S_X(f) \) of every WSS process is real, even, and nonnegative. In this problem you will show that, conversely, if \(S(f) \) is a real, even, nonnegative function such that \(\int_{-\infty}^{\infty} S(f) \, df < \infty \), then \(S(f) \) is the PSD for some WSS random process. Let us consider the case that

\[
\int_{-\infty}^{\infty} S(f) \, df = 1.
\]

Define the random process

\[
X(t) = \cos(2\pi F t + \Theta),
\]

where \(F \sim S(f) \) and \(\Theta \sim U[0, 2\pi) \) are independent.
a. Show that $X(t)$ is WSS.

b. Find the power spectral density of $X(t)$. Interpret the result.

c. Consider the power spectral density

$$S(f) = \frac{\alpha}{\alpha^2 + (\pi f)^2}, \quad -\infty < f < \infty.$$

Use MATLAB (or any other programming language) to generate sample functions of $X(t)$ for $\alpha = 1, 5, 20$.

Solution

a. First we find the mean of $X(t)$:

$$E(X(t)) = E[\cos(2\pi F t + \Theta)]$$

$$= E_F \left[E_{\Theta \mid F}(\cos(2\pi F t)) \mid F \right]$$

$$= \frac{1}{2\pi} \int_0^{2\pi} S(f) \int_{-\infty}^{\infty} \cos(2\pi f t + \theta) d\theta d\tau$$

$$= 0$$

since the integral of a periodic function over a full period is 0.

We now find the autocorrelation function:

$$R_X(t_1, t_2) = E_F \left[E_{\Theta \mid F}(\cos(2\pi F t_1 + \Theta) \cos(2\pi F t_2 + \Theta)) \mid F \right]$$

$$= E_F \left[\frac{1}{2} \cos(2\pi F(t_1 - t_2)) \right]$$

$$= E_F \left[\frac{1}{2} \cos(2\pi F \tau) \right]$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} S(\alpha) \cos(2\pi \alpha \tau) \, d\alpha.$$

Since the mean is time invariant and the autocorrelation function depends only on the time difference, $X(t)$ is WSS.

b. The power spectral density of X is

$$S_X(f) = \frac{1}{2} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} S(\alpha) \cos(2\pi \alpha \tau) \, d\alpha \right) e^{-j2\pi f \tau} \, d\tau$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} S(\alpha) \int_{-\infty}^{\infty} \cos(2\pi \alpha \tau) e^{-j2\pi f \tau} \, d\tau \, d\alpha$$

$$= \frac{1}{4} (S(f) + S(-f)) \quad \text{by the Fourier transform of cosine}$$

$$= \frac{1}{2} S(f) \quad \text{(since $S(f)$ is even)}$$

Notice that the psd of $X(t)$ is a scalar multiple of the pdf of F. This constructively
proves that any function that is real, even, and nonnegative and has a finite integral can be a power spectral density for a WSS random process.

c. The pdf and cdf of the frequency random variable F are related as follows:

$$f_F(f) = S(f) = \frac{\alpha}{\alpha^2 + (\pi f)^2} = \frac{d}{df} F_F(f).$$

Therefore

$$F_F(f) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\pi f}{\alpha} \right).$$

Thus the frequency random variable F is a function of a uniform $Z \sim U[0, 1]$.

$$F = F_F^{-1}(Z) = \frac{\alpha}{\pi} \tan(\pi(Z - \frac{1}{2})).$$

% The following MATLAB code generates 5 sample functions of X(t) % for each of three values of alpha: 1, 5 and 20.

```matlab
alpha_list = [ 1 5 20 ];
t = 0:.001:1;
for alpha_index = 1 : 3
    alpha = alpha_list( alpha_index );
    Z = rand( 5, 1 );
    F = (alpha/pi)*tan( pi*( Z - 1/2 ) );
    Theta = pi*( 2*rand( 5, 1 ) - 1 );
    X = cos( 2*pi*F*t + repmat( Theta, 1, 1001 ) );
    subplot( 3, 1, alpha_index );
    plot( t, X );
end

Sample output is shown in the figure below.