Q. 5: \[LR(y) = \frac{f_{Y/X}(y | X=1)}{f_{Y/X}(y | X=0)} \] if \[Y = hX + W \]

Q. 6. \[Y = AX + W \quad W \sim N(0, \sigma) \]
a) \[\hat{X}(y, a) \]

\[LR(y \mid a) = \frac{f_{Y,A}(y, a \mid X=1)}{f_{Y,A}(y, a \mid X=1)} \] if \[X \leq 1 \]
Scenario 1: \(Y, A \) observed, \(A \geq 0 \Rightarrow \hat{X} = 1 \)

Scenario 2: \(Y \) observed, \(A \geq 0 \Rightarrow \hat{X} = -1 \)

Scenario 3: \(Y \) observed, \(\text{pdf} A \) is sym around 0

\[f_{Y,A}(y,a \mid X = 1) \]

\[= f_{A \mid X}(a \mid X = 1) \cdot f_{Y \mid X,A}(y \mid A=a, X = 1) \]

\[= \frac{f_{A}(a) \cdot f_{Y \mid X,A}(y \mid a,x=1)}{f_{A}(a) \cdot f_{Y \mid X,A}(y \mid a,x=0)} \leq \]

\[\frac{f_{A}(a) \cdot f_{Y \mid X,A}(y \mid a,x=0)}{f_{A}(a) \cdot f_{Y \mid X,A}(y \mid a,x=0)} \]

Estimation

\[X \xrightarrow{\text{channel}} Y \xrightarrow{\text{estimate}} \hat{X} \]

\(X \) is continuous

\[\mathbb{P}_Y (\hat{X} \neq X) \leq \lambda (x, \hat{x}) \]

\[C(x, \hat{x}) = \text{cost function (loss function)} \]

Criterion: \(E [C(X, \hat{X})] \)
\[c(x, \hat{x}) = |x - \hat{x}| \]

\[c(x, \hat{x}) = (x - \hat{x})^2 \]

\[c(x, \hat{x}) = \begin{cases} 1 & \text{if } x \neq \hat{x} \\ 0 & \text{else} \end{cases} \rightarrow \text{error probability} \]

Continuity, but not smooth.

Continuous and smooth.

not continuous

\[2 - \text{square error} \]

Estimator: MMSE = minimum mean square estimator

\[\min_\hat{X} \mathbb{E} \left[c(X, \hat{X}(Y)) \right] \]

Extension to vector

\[c(x, \hat{x}) = \| x - \hat{x} \|^2 = \sum (x_i - \hat{x}_i)^2 \]

Focus on scalar case first.
Simple solution to NMSE estimation

\[X \rightarrow \text{channel} \rightarrow Y \]

\[\frac{f_X}{f_Y|x} \]

\[\hat{X}^* = \text{MMSE} \]

\[\min_{\hat{X}} \mathbb{E} \left[(X - \hat{X}(Y))^2 \right] \]

Condition \(Y \)

\[\Pr \{ \hat{X}(Y) \neq X \} \]

Analogous to optimal design: NAP rule.

\[\min_{\hat{X}} \int \left[\mathbb{E} \left[(X - \hat{X}(Y))^2 \right] \bigg| Y = y \right] f_Y(y) \, dy. \]

(totally prob rule applied to expectation, conditioning \(W \) continues)

For any \(Y \):

\[\min_{a} \mathbb{E} \left[(X - a)^2 \right] \bigg| Y = y \]

Solve simpler problem

\[\min_{a} \mathbb{E} \left[(X - a)^2 \right]. \]

Moments or inference around \(a \).
find a point \(a \) to minimize moment of inertia around \(a \).

center of mass:

\[
Y = E[X]
\]

\[
\min_a E \left[(X - a)^2 \right] \Rightarrow a^* = E[X].
\]

\[
= \text{Var}(X) .
\]

back to:

\[
\min_a E \left[(X - a)^2 \bigg| Y = y \right] = \text{Var}(X \bigg| Y = y)
\]

\[
a^* = E \left[X \bigg| Y = y \right].
\]

\[
\Rightarrow \hat{X}_{\text{MMSE}}(y) = E \left[X \bigg| \hat{Y} = y \right].
\]

short form:

\[
\hat{X}_{\text{MMSE}}(y) = E \left[X \bigg| Y \right] .
\]
True for any channel and any prior.

Example 0: How to compute \(\mathbb{E}[X|Y] \) if \((X,Y)\) is jointly Gaussian?

\[f(x,y) \]

\[\frac{f(x,y)}{f(y)} = f(x|y) \]

Claim: Conditional on \(Y = y \), \(X \) is Gaussian.

Theorem: I can always write \(X \) as

\[X = \alpha Y + \Delta \]

for some \(\alpha \), such that \(\Delta \) is Gaussian and independent of \(Y \).

From Theorem: 2) Claim follows

\[\mathbb{E}[X|Y=y] = \alpha y + \mathbb{E}[\Delta] \]
Proof of theorem:

pick any \(\alpha \)

\[
\Delta = X - \alpha Y.
\]

\(\Delta \) is Gaussian

(\(\Delta, Y \)) is jointly Gaussian

\(\Delta, Y \) are independent if and only if \(\Delta, Y \) are uncorrelated.

Assume zero mean for \(\Delta, Y \).

\[
E[\Delta \cdot (Y)] = 0 \rightarrow \text{solve for } \alpha
\]

\[
E[(X - \alpha Y)Y] = 0
\]

\[
\Rightarrow E[X Y] - \alpha E[Y^2] = 0
\]

\[
\Rightarrow \alpha = \frac{E[X Y]}{E[Y^2]} \rightarrow \text{covariance } X, Y
\]

\[
\Rightarrow \alpha = \frac{\text{var } Y}{E[Y^2]}
\]
\[\Delta = X - \alpha^* Y, \quad \alpha^* = \frac{E[xy]}{E[y^2]} \]

Then \(\Delta, Y \) are independent

\[X = \alpha^* Y + \Delta \] \[\sim\] Gaussian

\[\text{Condition on } Y = y, \quad X \sim N(\alpha^* y, \text{Var}[Y] - \frac{\text{Cov}(x,y)^2}{\text{Var}[Y]^2}) \]

\[\text{Var}[X] = (\alpha^*)^2 \text{Var}[Y] + \text{Var}[\Delta] \]

\[\text{Var}[\Delta] = \text{Var}[X] - (\alpha^*)^2 \text{Var}[Y] \]

\[\text{Var}[\Delta] = \text{Var}[X] - \frac{\text{Cov}(x,y)^2}{\text{Var}[Y]^2} \cdot \text{Var}[Y] \]

\[\text{Var}[\Delta] = \text{Var}[X] - \frac{\text{Cov}(x,y)^2}{\text{Var}[Y]} \]
E[\sqrt{X}] = \alpha \ast Y = \frac{\text{Cov}(X, Y)}{\text{Var}(X)} \cdot Y

\text{linear function of } Y.