Recap:

\[Y = h^T X + W \]

- \(X, W \) independent
- \(X \sim \mathcal{N}(0, \beta^2) \)
- \(W \sim \mathcal{N}(0, \sigma^2 I) \)

\[V = h^T Y \text{ is a sufficient statistic} \]

\[V = h^T (h^T X + W) = h^T h^T X + h^T W \]

\[h^T W \sim \mathcal{N}(0, \beta^2 \sigma^2) \]

\[\|h\| = 1 \]

\[V^* = (h^*)^T Y \]
Why V^\top is not useful for detecting X given Y?

$V = \begin{bmatrix} h^\top Y = h^\top (h^\top X + \tilde{W}) = X + h^\top \tilde{W} = X + \tilde{W} \\
V = \begin{bmatrix} h \end{bmatrix}^\top Y = \begin{bmatrix} h \end{bmatrix}^\top (h^\top X + \tilde{W}) = 0 + \tilde{W} \tilde{W} = \begin{bmatrix} h \end{bmatrix}^\top \tilde{W} \tilde{W} = h^\top \tilde{W}$

(V is a suff. stat. if the likelihood ratio can be computed from V without Y)

$W \sim N(0, \Sigma_{\tilde{W}})$

$\tilde{W} = \begin{bmatrix} h \end{bmatrix}^\top W$

$\tilde{W}_2 = h_{11}^\top W$

$W = \begin{bmatrix} \tilde{W}_1 \\ \tilde{W}_2 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} h \end{bmatrix} \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix} W$
\(\tilde{W} \) is i.i.d., \(\tilde{W} \sim N(0, \sigma^2 I) \)
\(\tilde{W}, \tilde{W} \) are independent!

1) \(V^+ \) has no \(X \)
2) \(V^+ \) is independent of \(\tilde{W} \)
3) \(V^+ \) is useless.

Recap:
A suff. statistic \(V \)
1) can compute LR.
2) can do optimal detection.
3) given \(\tilde{W}, \tilde{W} \) and \(\tilde{W} \) are independent.

\(\begin{align*}
X & \xrightarrow{\text{Channel}} Y \rightarrow V \rightarrow X \\
\uparrow & \uparrow \uparrow \uparrow \\
V &= \mathcal{D}(Y)
\end{align*} \)

Given \(Y \), \(X \) and \(V \) are independent \(\checkmark \)

Given \(V \), \(X \) and \(Y \) are independent \(\checkmark \)
Given V, X and Y are independent, so I can throw Y away!

X and Y are independent

Y itself is a suff. statistic!

Given Y, X and Y are indp. \checkmark

Conditional independence:

$$f_{X,Y|V} = f_{X|V} \cdot f_{Y|V}$$

Interference example:

$$Y = hX + gZ + W, \quad W \sim N(0, \sigma_w^2)$$

signal

interference

dir.
dir.
\[V = h^T Y \text{ is it a sufficient statistic?} \]

\[V^+ = (h^+)^T Y = (h^+)^T (h X + g Z + W) \]

\[= (h^+)^T g Z + (h^+)^T W = (h^+)^T \tilde{g} Z + \tilde{W}, \]

\[V = X + h^T g Z + h^T W = X + \tilde{g} Z + \tilde{W}, \]

\(\tilde{W}_1 \) and \(\tilde{W}_2 \) are independent

In general, \(V^+ \) is useful, except for the special case \((h^+)^T g = 0 \).

\[V = h^T Y \rightarrow \text{projection of } V \text{ onto span}(g, h) \]

\[\tilde{V} = g^T Y \]

Claim \((V, \tilde{V})\) is a sufficient statistic.

1. Signal in the plane
2. Interference \(Z \) in the plane
3. Noise \(W \) in plane is independent of noise in the plane.
component γ plane has no infinite.

For detection,

$$W \rightarrow \hat{W}_1 = h^T W$$

$$\hat{W}_2 = (h g^T)^T W$$

$$\hat{W}_3 = a^T W$$

$$V = h^T Y = X + (h g^T Z + \hat{w}_1)$$

$$\tilde{V} = g^T Y = (g^T h X + \operatorname{diag} Z + \hat{w}_1')$$

$$= \begin{bmatrix} 1 \\ \hline g^T h \end{bmatrix} X + U = h^T X + \begin{bmatrix} 0 \\ \hline U \end{bmatrix}$$

$$U = \begin{bmatrix} h g^T Z + \hat{w}_1 \\ \hline \operatorname{diag} Z + \hat{w}_1' \end{bmatrix}$$

ex. $Y = h^T X + \tilde{W}$, $\tilde{W} \sim \mathcal{N}(0, \sigma^2 I)$