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1. Problem statement
 
The costs of blackouts can be astronomical. The Department of Energy estimates the total cost of 
the August 2003 blackout of the Northeastern United States and Canada to be about $6 billion[1]. 
Because of this, improving the reliability of the electrical grid is of paramount economic concern. 
It is important to know the condition of the grid and its components to make the expected 
performance quantifiable, and to make risks and costs predictable and controllable. Today, as 
our ability to monitor the state of the power grid and its components increases, it is possible to 
make maintenance effective, efficient and timely, which may allow us to postpone investments 
in a justified way and permit controlled overloading. Moreover, it enables us to justify the asset 
management policy to stakeholders such as clients, shareholders and regulators. 
 
Our focus will be on scheduling the maintenance of these components based on the probability 
of failure of individual components, and how these components affect the system as a whole. 
One of the key components in the grid, in terms of both reliability and investment, is the power 
transformer. The reliability of transformers is a prime concern to grid operators. This analysis 
will predict the transformer reliability and the associated costs based on relevant degradation 
mechanisms. 
 
 
2. Introduction
 
Tranformer Failure Modes
There are several ways in which a transformer can fail. Transformer failure can usually be 
attributed to the failure of a component. These failures can occur in the tap changer, bushings, 
windings, core, or the tank and dielectric fluid. The can also be a failure for other reasons such as 
temperature[9]. Because of the prevalence of power transformers in modern society, the failure 
modes of power transformers have been well studied. There are well accepted models for modeling 
the degradation of the quality of the paper winding insulation of transformers, as well as for 
modeling the health of the transformer bushings and tap changers [10, 11, 12].
 
Extreme Value Theory
Extreme value theory is a branch of statistics dealing with the extreme deviations from the median 
of probability distributions. It seeks to assess the probability of events that are more extreme 
than any observed prior. Extreme value analysis is widely used in many disciplines, ranging from 
structural engineering, finance, earth sciences, traffic prediction, geological engineering, etc. For 
example, it might be used in the field of hydrology to estimate the value an unusually large flooding 
event, such as the 100-year flood. Historical data on loss severities in insurance are often modelled 
with a variety of heavy-tailed distributions. Fitting can be carried out with standard software and 
it is common practice to fit a number of models to a given dataset and to select the best fitting ones 
according to goodness-of-fit criteria. [3][4]
 
Modeling in Industry
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Transformer lifetime, in industry, is generally modeled as an ideal model perturbed by results of 
over-stress events. In this study, we adapt this model for our purposes.
 

  [6]
 
3. Solution
 
The goal of this project is to create an algorithm for predicting the probability of failure of one of 
transformer components. We base our method on the assumption that we would have detailed data 
on the life of the transformer so far via some sort of sensor measurements. This sensor data would 
provide historical data with which we could build a probability distribution of deviations from the 
expected behavior. Using this distribution, we would then try to predict when the transformer is 
likely to fail. We also assume that these sensors would give us knowledge of the current state of the 
transformer. 

 
In order to predict the probability of failure of a transformer, we need to be able to model common 
problems with transformers. Our initial focus was on transformer insulation paper degradation.  
A first order model of paper degradation in transformers in presented in works by Emsley and 
Lundgard [10, 11]. This model served as the basis for our analysis. 

Because there is no publicly available data on the health history of transformers, we had to 
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generate this data ourselves. In this way, this project is more of a verification of our method rather 
than an application to real data. We assume that the deviations from the norm would follow an 
extreme value distribution. We generate a vector of deviations, and apply these to the model to 
generate a health history for the transformer.
 
The parameter which reflects the overall “health” of the insulation paper is the degree of 
polymerization (DP).  In order to model this, we start with the model presented by Emsley.  
  
At each time step, we take the expected DP value at the next time step and subtract a deviation 
generated from a generalized extreme value distribution. The distribution causes increased loss of 
DP at each time step. This new value is located in the model, and the next time-step is taken from 
that point. The process is repeated until the transformer DP reaches the point of failure.  In this 
way, we model a history of the transformer life.  
 
At any time step, we can predict the probability of failure of the transformer in some set amount 
of time-steps. We do this by fitting the deviations from the model to a generalized extreme value 
probability density function. We then run a monte carlo simulation using this distribution across a 
set time period and check whether the transformer fails or not. The number of failures divided by 
the number of trials gives the probability of failure. 
 
 
4. Analysis and Simulations
 
The first step of the simulation is to generate the transformer history. Next, we predict the 
probability of transformer failure. First, we simulate the ideal transformer based on the model. The 
DP degradation curve for an ideal transformer is shown below. We assume that the initial value 
of DP is 1000. The threshold DP below which the transformer ceases to function is assumed to be 
250. 1 day is treated as 1 time step. As can be seen from the curve, an ideal transformer, with these 
parameter settings, lasts for about 2931 days.
 

The second step is to generate a deviation from expected values using an extreme value distribution 
at each time step. We use a generalized pareto distribution as our extreme value distribution, with 
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mean very close to 0 and a very high spread. 

Third step is to generate a transformer history curve, which is nothing but the transformer’s 
ideal curve perturbed by deviations at each step generated in step 2. The figure below shows the 
transformer history curve. One can note that expected lifetime of the transformer has decreased to 
1955 days because of the deviations from the model. 

 
This ends the first part of the simulation. We use this transformer history curve and try to predict 
expected lifetime of the transformer. 
 
We compare the history curve with the ideal curve to extract the deviations from the expected 
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behavior. Next, we fit this data to a generalized pareto distribution to get the parameters for 
the GPD. We use this distribution in a Monte-Carlo simulation to calculate the probability of the 
transformer failing. 

The above probabilities were calculated as the probability of failure within the next 10 days. The 
probability of failure starts very close to zero, and rises to 100% 10 days before the “actual” failure 
on day 1955. 
 
The following figures show results from a separate simulation using similar settings. For this 
simulation, the curve is very smooth as there were no major detrimental events.
 

 
The probability of failure was calculated for failing within the next 30 days. We see that 30 days 
before the actual failure, the probability of failure is 100% as expected. 
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It is important to note that occasionally, the failure of a transformer will have an extremely low 
probability just before it fails. This occurs when a large deviation from the expected behavior 
occurs towards the end of the lifetime of the transformer. This would correspond to a large 
detrimental event. These extremely unlikely events pose a problem for predicting failures.
 
 
5. Future work
 
Thus far, we have only explored the probability of failure of a single transformer due to a single 
failure mode. Our next step in this project would be to include more degradation mechanisms that 
are relevant to the transformer lifetime. Currently our analysis includes modeling of only paper 
degradation process. The next step would be to model the probability of failure of tap changers, as 
these most often lead to transformer failures[9]. 
 
We hope that analyzing additional failure modes would be a rather straightforward process 
that could be based on the work that we’ve already done. It may be the case that the different 
failure modes are correlated, and this adds a complication to the problem. Our planned approach 
to this problem is to find some common parameter between the models. For example, the DP 
calculation is heavily dependent on temperature as is transformer bushing lifetime. By extracting 
the temperature from the DP simulations, we hope to be able to properly model the correlation 
between the two failure modes.
 
Another goal of this project is to apply our method to actual data. Using actual data will allow us to 
better define the model. For example, our use of the extreme value distribution is a guess. By using 
real transformer data, we can fit the appropriate distribution to the data while keeping our method 
the same. 
 
After adding more dimensions of failure, we would like to add the costs of failure to our analysis 
to aid with decision making in terms of replacement and maintenance. To associate a cost with 
the failure of a transformer would allow us to decide whether a transformer is a candidate for 
maintenance, replacement, or whether it is appropriate to let the transformer run to the end of its 
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life. 
 
The truly powerful part of this study would be to expand the analysis to multiple transformers. 
Because power grids are built to handle N-1 contingencies, the cost of failure of a single 
transformer would likely be of no real concern to a utility company. If multiple transformers were 
to fail, however, the costs could be severe. Multiple component failure can cause widespread 
outages and grid instability. Analyzing the probability of failure of multiple transformers and the 
costs associated with these events is the ultimate goal of this project. 

 
 

7



6. References
 
1. The Economic Impacts of the August 2003 Blackout, Electricity Consumers Resource Council, 
February 9, 2004
 
2. Prediction of remaining life of power transformers based on left truncated and right censored 
lifetime data, Yili Hong, William Q. Meeker, and James D. McCalley, Ann. Appl. Stat. Volume 3, 
Number 2 (2009), 857-879
 
3. Extreme Value Theory as a Risk Management Tool, Paul Embrechts, Sidney I. Resnick and 
Gennady Samorodnitsky, North American Actuarial Journal, Volume 3, Number 2, April 1999
 
4. The Peaks over Thresholds Method for Estimating High Quantiles of Loss Distributions, 
Alexander J. McNeil & Thomas Saladin
 
5. Anomaly Detection: A survey, Varun Chandola, Arindam Banerjee and Vipin Kumar, ACM Comput. 
Surv. 41,3, Article 15 (July 2009)
 
6. Grid Analytics - T&D Power Equipment Diagnosis/Prognosis thru Smart Grid Technologies,
Alex Rojas, GE
 
7. Power Transformer Reliability Modeling -  Arjan Schijndel
 
8. Validation of reliability forecasting for power transformers - Arjan van Schijndel, Jos M. Wetzer, 
and Peter A.A.F. Wouters (2008)
 
9. A statistical approach to processing power transformer failure data - R. Jongen, et. al., Cired 19th 
International Conference on Electricity Distribution, Paper 546, May 2007.
 
10.  Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-
filled transformers- A.M. Emsley and G.C. Stevens , IEE Proc.-Sci. Meas. Technol. Vol. 141, No. 5, 
September 1994
 
11. Ageing of oil-impregnated paper in power transformers- Lars E. Lundgaard, Walker Hansen, et 
al.,  IEEE PWRD Dec. 2002
 
12. Advanced on-site diagnosis of transformer on-load tap changer, Jur J. Erbrink, Edward Gulski, et 
al. , IEEE 2008
 

8



Appendix - Simulation Codes
 
CreateTransformer.m
 
clear all;
close all;
 
%% Set the parameters for the transformer
 
% The activation energy
Ea = 111*10^3; %J/mol
 
% Process Constant
A = 2*10^+8; %h-1
 
% Gas Costant
Rg = 8.314;
 
%Temperature (As a function of time. Assumed constant)
T = 370; %K, 98 deg C
 
% Reaction rate
k = A*exp(-Ea/(Rg*T)); %h-1
k = 24*k; %d-1
 
% Original DP value (Degree of Polymerization)
DP0 = 1000; 
 
% Threshold DP value below which transformer ceases to function
DPc = 250;
 
%% Create the ideal transformer
 
% Start of history
t0 = 1;
 
% End of history
tm = 15*365; % Arbitrarily chosen as 15 years since average transformer life with above 
parameters was aobserved to about 10-12 years
 
% Generate the curve
DP(t0) = DP0;
for t=t0+1:tm
    DP(t) = DP(t0)/(1+DP(t0)*k*(t-t0));
     
    if DP(t) < DPc && DP(t-1) >= DPc
        disp(sprintf('Ideal transformer would last for %d days or %d years',t, t/365));
    end
end
 
% figure, plot(t0:tm,DP);
% title('Ideal Transformer Curve');
% xlabel('Number of days');
% ylabel('DP value');
 
%% Create a transformer history
 
% Set parameters for Extreme Value Distribution
sp0 = -3; % shape parameter
sig0 = 0.05;
mu0 = 0;
 
% Generate deviations for each time-step
for i=t0:tm
    Dev0(i) = gevrnd(sp0, sig0, mu0);
end
 
figure, hist(Dev0);
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% Generate the curve by introducing deviations to the original curve
DPa(t0) = DP0;
for t=t0+1:tm
    DPa(t) = DPa(t-1)/(1+DPa(t-1)*k*1);
     
    DPa(t) = max( DPa(t) + min(Dev0(t),0), 0);
     
    if DPa(t) < DPc && DPa(t-1) >= DPc
        disp(sprintf('Non-ideal transformer would last for %d days or %d years',t, t/365));
        TL = t;
    end    
end
 
figure, plot(t0:tm, DPa, t0:tm, DP);
title('Ideal and Actual Transformer History Curve');
xlabel('Number of days');
ylabel('DP value');

 
 
PredictFailure.m
 
%% Compute the probability that transformer will fail in next m days
 
% Prediction days
m = 10;
 
% Today
%today = TL-5m:TL;
Tw = 25;
 
for today=TL-Tw:TL
    today
 
tic;
%% Compute the distribution of deviations based on history
 
for t=t0+1:today
    ind = find(DP<DPa(t-1),1);
    Dev(t-1) = DPa(t) - DP(ind);
end
 
%figure, hist(Dev);
paramhat = gevfit(Dev);
sp = paramhat(1); sig = paramhat(2); mu = paramhat(3);
 
disp(sprintf('Curve fit successful ! sp = %d scale = %d mu = %d ',sp, sig, mu));
 
%% Run the simulation for next m days 
 
% Number of iterations
numit = 10000;
 
itcount = 0;
for it=1:numit    
    currentDP = DPa(today);
    for tn=1:m
        ind = find(DP<currentDP,1);
        currentDP = max( DP(ind) + min(gevrnd(sp,sig,mu),0),0);
        if currentDP < DPc
            itcount = itcount + 1;
            break;
        end
    end    
end
 
pf = itcount/numit;
disp(sprintf('Probability of failure on day %d is %d', today, pf));
toc;
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pfv(today) = pf;
end
 
figure, plot(TL-Tw:TL,pfv(TL-Tw:TL));
title('Failure Probability Across Transformer Lifetime');
xlabel('Number of days');
ylabel('Probability of failure');
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