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Outline

•Interconnect scaling issues

•Aluminum technology 

•Copper technology 
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Wire Half Pitch vs Technology Node

Narrow line effects

Ref: J. Gambino, IEDM, 2003

ITRS 2002
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Interconnect Scaling Scenarios
• Scale Metal Pitch with Constant Height

- R, Cs and J increase by scaling factor

- Higher aspect ratio for gapfill / metal etch

- Need for lower resistivity metal, Low-k

• Scale Metal Pitch and Height

- R and J increase by square of scaling factor

- Sidewall capacitance unchanged

- Aspect ratio for gapfill / metal etch unchanged

- Need for very low resistivity metal with 
  significantly improved EM performance
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Low ρ (Resistivity)
Metal

Ag
Cu
Au
Al
W

Bulk Resistivity [µΩ•cm]
1.63
1.67
2.35
2.67
5.65

Cu is the second best conducting element

Reduced  RC delay
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Why Cu and Low-k Dielectrics?
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Why Cu and Low-k Dielectrics?

Better electromigration resistance, reduced resistivity and dielectric
constant results in reduction in number of metal layers as more wires
can by placed in lower levels of metal layers.

global

semiglobal

local

Ref: M. Bohr, IEDM 1995.
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Ref: S. Luce, (IBM), 
IEEE IITC 1998

high
electromigration

resistance

Al Cu

Melting Point 660 ºC 1083 ºC

Ea for Lattice Diffusion 1.4 eV 2.2 eV

Ea for Grain Boundary
Diffusion

0.4 – 0.8 eV 0.7 – 1.2 eV

Why Cu?: Excellent Reliability

Stress Time (hours)
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J = 2.5x106 A/cm2

T = 295°C

Cu
T50= 147.7 Hrs

Al(Cu)
T50= 1.31 Hrs

> 110X 
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Cu atoms ionize, penetrate into the dielectric, and then
accumulate in the dielectric as Cu+ space charge.

Problem: Copper Diffusion in Dielectric Films
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Copper Diffusion in Dielectric Films
Bias temperature stressing is employed to characterize behavior

• Both field and temperature affect barrier lifetime
• Neutral Cu atoms and Cu ions contribute to Cu transport through dielectrics

Ref: A. Loke et al., Symp. VLSI Tech. 1998

Silicon nitride and oxynitride films are better barriers
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• Fast diffusion of Cu into Si and SiO2
• Poor oxidation/corrosion resistance
• Poor adhesion to SiO2

Diffusion barrier /adhesion promotor
 Passivation

• Difficulty of applying conventional
  dry-etching technique

Damascene Process

Typical Damascene Process

Dielectrics

Barrier Layer

Cu

Solutions to Problems in Copper
Metallization
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Barriers/Linears

Dielectric

Barrier/Linear

Metal

Via

Space for wire
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Materials for Barriers / Liners
• Transition metals (Pd, Cr, Ti, Co, Ni, Pt) generally poor barriers, due to high reactivities to Cu

<450˚C. Exception: Ta, Mo, W ... more thermally stable, but fail due to Cu diffusion through
grain boundaries (polycrystalline films)

• Transition metal alloys: e.g., TiW. Can be deposited as amorphous films (stable up to 500˚C)

• Transition metal - compounds: Extensively used, e.g., TiN, TaN, WN.

• Amorphous ternary alloys: Very stable due to high crystallization temperatures (i.e.,
Ta36S14,N50, Ti34Si23N43)

• Currently PVD (sputtering/evaporation is used primarily to deposit the barrier/liner, however,
step coverage is a problem. ALD is being developed for barrier/liner application.

PVDALD
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Interconnect Fabrication Options

Metal

Etch

Positive

Pattern

Dielectric

Deposition

Dielectric

Planarization

by CMP

Negative

Pattern

Dielectric

Etch

Metal

Deposition

Metal CMP

Dielectric

Deposition

Metal

Dielectric

Photoresist

Etch Stop
(Dielectric)

Subtractive Etch
(Conventional Approach) Damascene
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Cu Damascene Flow Options

Oxide

Copper

Conductive Barrier
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Cu Damascene Flow Options
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 Various deposition methods for Cu metallization has been attempted :

 Physical vapor deposition (PVD) : Evaporation, Sputtering
• conventional metal deposition technique: widely used for Al interconnects

• produce Cu films with strong (111) texture and smooth surface, in general

• poor step coverage: not tolerable for filling high-aspect ratio features

Deposition methods of Cu films: PVD

Deposited film
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Deposition methods: CVD

 conformal deposition with excellent step coverage in high-aspect ratio holes and vias
• costly in processing and maintenance
• generally produce Cu films with fine grain size, weak (111) texture and rough surface

EE311/ Cu Interconnect16 tanford University
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Deposition methods: Electroplating

Dissociation :  CuSO4 → Cu2+ + SO4
2- (solution)

Oxidation:  Cu → Cu2++ 2e- (anode)
Reduction :  Cu2+ + 2e- → Cu (cathode, i.e., wafer)

Copper electroplating Chemistry :

 Plating Bath : standard sulfuric acid
copper sulfate bath (H2SO4, CuSO4
solution)

 Additives to improve the film quality
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 Electrochemical deposition (EVD)
 Good step coverage and filling capability comparable to CVD process (0.25 µm)
 Compatible with low-K dielectrics
 Generally produce strong (111) texture of Cu film
 Produce much larger sized grain structure than any other
   deposition methods through self-annealing process

Why Cu Electroplating?
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non-conformal
"bottom-up filling"

("superfilling")

void

Trench Filling PVD vs. Electroplating of Cu

PVD  Electroplating
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Seed only 5 seconds      10 seconds      15 seconds      25 seconds  

Plated Copper Fill Evolution

Ref: Jonathan Reid, IITC, 1999
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Trench Filling Capability of Cu
Electroplating

0.13µ trenches 0.18µ vias 029µ vias

Ref: Jonathan Reid, IITC, 1999
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Additives for Copper ECD
DEFINITION

• Mixture of organic molecules and chloride ion which are adsorbed at the
copper surface during plating to:

  -- enhance thickness distribution and feature fill

  -- control copper grain structure and thus ductility, hardness, stress,
and surface smoothness

COMPONENTS

• Most commercial mixtures use  3 or more organic components and
chloride ion which adsorb at the cathode during plating.

Brighteners (Accelerators)    Levelers      Carriers      Chloride       Suppressors

EE311/ Cu Interconnect22 tanford University
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Wafers immersed in plating
bath. Additives not yet
adsorbed on Cu seed.

Additives adsorbed on Cu
seed. No current flow.

Conformal plating begins.
Accelerators accumulate at
bottom of via, displacing less
strongly absorbed additives.

Accumulation of accelerator
due to reduced surface area in
narrow features, causes rapid
growth at bottom of via.

t = 2 sec

t = 10 sec t = 20 sec

t = 0 sec
= Accelerators
= Suppressors

c = Chloride ions
L = Levelers

Mechanisms of Superconformal Cu plating

Ref:   J. Reid et al., Solid St. Tech., 43, 86 (2000)
D. Josell et al., J. Electrochem. Soc., 148, C767 (2001)
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Brighteners (Accelerators)

• Adsorbs on copper metal during plating, participates in charge transfer reaction.
Determines Cu growth characteristics with major impact on metallurgy

Levelers
• Reduce growth rate of copper at protrusions and edges to yield a smooth final

deposit surface.

• Effectively increases polarization resistance at high growth areas by inhibiting
growth to a degree proportional to mass transfer to localized sites

Carriers
• Carriers adsorbed during copper plating to form a relatively thick monolayer film

at the cathode (wafer). Moderately polarizes Cu deposition by forming a barrier
to diffusion of Cu2+ ions to the surface.

Chloride
• Adsorbs at both cathode and anode.

• Accumulates in anode film and increases anode dissolution kinetics.

• Modifies adsorption properties of carrier to influence thickness distribution.

Role of Additives
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Effect of of the seed layer on the
properties of the final Cu

Seed Layer Texture

Seed Layer 
Surface Roughness

Plated Film TexturePlated Film Texture

Plated Film Grain Size

• Strong (111) texture 
• Smooth surface

• Strong (111) texture
• Large grain size

Seed Layer Electroplated Film

(Thin, PVD seed preferred)

• Electroplating needs a seed layer of Cu as it does not occur at a dielectric surface.
• Properties of the final Cu layer critically depend upon the characteristics of the seed layer.
• The deposition of the seed layer can be done by PVD, CVD or ALD.
• Currently PVD is preferred, CVD and ALD  being investigated
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Electroplated Cu has higher resistance to electromigration
because of its grain structure

Electromigration: CVD vs. Electroplating

CVD Cu

Electroplated Cu
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Ref: Ryu, et al., 
IEEE IRPS 1997.
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• Empirical relationship (for Al & Al alloys)

Film Microstructure vs. EM Time-to-Failure
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•   EM dependence on the microstructure of Cu films

S. Vaidya et al., 
Thin Solid Films, Vol. 75, 253, 1981

Ref: Ryu, Loke, Nogami and Wong, 
IEEE IRPS 1997.
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Cu Resistivity: Effect of Surface and Grain
Boundary Scattering
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e

e

Surface scattering

Bulk scattering

 Effect of Electron Scattering

•Reduced mobility as dimensions decrease

 Grain boundary scattering

 Surface scattering

•Reduced mobility as chip temperature increases

 Increased phonon scattering

Thin Film Resistivity: Role of Carrier
Scattering

Grain
Grain boundary
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W. Steinhögl et al., Phys. Rev. B66 (2002)

 Resistivity increases as grain size decreases due to increase in density

of grain boundaries which act as carrier scattering sites
 Resistivity increases as main conductor size decreases due to

increased surface scattering

Cu Resistivity: Effect of Line Width Scaling
Due to Scattering
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Cu Resistivity: Effect of Cu diffusion Barrier

Effect of Cu diffusion Barrier

• Barriers have higher resistivity

• Barriers can’t be scaled below a minimum thickness

• Consumes larger area as dimensions decrease

Resistivity of the composite wire is increased

Resistivity of metal wires could be much higher than bulk value

FutureCu
Barrier
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Cu Resistivity: Integrated Model 

 Barrier Effect

 Electron Surface Scattering Effect

w

h• Important parameter: Ab to Aint ratio 
• ρb increase with Abto Aint ratio
• Future: ratio may increase

AR=h/w
Aint=AR*w2

Cu

P: Fraction of electrons
    scattered elastically from
    the interface
k= d/ λmfp
λmfp: Bulk mean free path
         for electrons
d: Smallest dimension of
    the interconnect

Elastic scattering 
No Change in Mobility

Diffuse scattering 
Lower Mobility

P=0

P=1

• Reduced electron mobility
• Operational temperature
• Copper/barrier interface quality
• Dimensions decrease in tiers: local, semiglobal, global

Barrier

Kapur, McVittie & Saraswat, IEEE Trans. Electron Dev. April 2002
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Cu Resistivity: Global Interconnects

IPVDC PVD ALD
Effect of Barrier Technology

Cu
 barrier

• Barriers can’t be scaled and have very high resistivity
• Surface electron scattering increases resistivity of scaled wires
• Real chips operate at higher temperatures
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Kapur  and Saraswat, IEEE TED, April 2002

Effect of Scaling

Cu
barrier 100°C

e

Al
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Semi-global & Local Interconnects
 

Kapur, McVittie & Saraswat, IEEE Trans. Electron Dev. April 2002

Temp.=100 0C
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 With ALD least resistivity rise
 Al resistivity rises slower than Cu. Cross over with Cu resistivity possible

–  no 4 sided barrier, needs only thin TiN to improve reliability and as anti
reflection coating

–  smaller λmfp => smaller k
–  But has reliability problem Al Cu

Technology  node (µm)

Al P=0
P=0.5
P=1

Cu, P=0.5

0.18 0.15 0.12 0.1 0.07 0.05 0.035

PVD
C-PVD

I-PVD
ALD: 10nm

ALD: 3nm
ALD: 1nm

No Barrier

Semiglobal
 Temp.=100 0C
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• Higher temperature ⇒ lower mobility ⇒ higher resistivity
• Realistic Values at 35 nm node: P=0.5, temp=100 0C

- local ~ 5 µΩ-cm
- semi-global ~ 4.2 µΩ-cm
- global ~ 3.2 µΩ-cm

 Cu Resistivity: Effect of Chip Temperature
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Kapur, McVittie & Saraswat 
IEEE Trans. Electron Dev. April 2002
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Summary

•Interconnect scaling issues

•Thermal issues

•Electromigration 

•Aluminum technology 

•Copper technology 


