EE359 Discussion Session 5
Performance of Linear Modulation in Fading, Diversity

October 28, 2015
Outline

1. Recap

2. Performance analysis of linear modulation

3. Linear modulation in fading

4. Diversity
Announcement

- Please fill out mid-quarter TA evaluation form (deadline Nov. 3, details on website), 10 bonus points for those who complete this!
- Midterm review on Sunday, November 1, 4-6 pm, in Packard 364
- Midterm next Wednesday, November 4, 6-8 pm, in Hewlett 101
Last discussion session

- Capacity formulas with CSIT and CSIR
- Optimal power and rate adaptation policies
- Suboptimal power adaptation policies

This session

- Performance analysis of linear modulation in fading
- Diversity
Outline

1. Recap
2. Performance analysis of linear modulation
3. Linear modulation in fading
4. Diversity
What is linear modulation

Definition

Any modulation where the data is encoded in real or complex symbols (i.e. in amplitude or phase) is linear modulation

Observations

- Performance dependent on constellation (*not* on baseband waveform)
- Examples are BPSK, QPSK, MPAM, MQAM, etc.
- FSK (frequency shift keying) is not linear, why?

From now on we consider P_s or P_b as metric
Linear modulation in AWGN

Idea

Noise is additive, hence

\[y[i] = x[i] + n[i] \]

- \(P_b = Q(\sqrt{2\gamma_b}) \) if \(n[i] \sim \mathcal{N}(0,1) \), and \(x[i] \in \text{BPSK} \)
- In general, well approximated by \(P_s \approx \alpha_M Q(\sqrt{\beta_M \gamma}) \), where \(\alpha_M, \beta_M \) are constellation dependent
- For differential PSK (DPSK) systems, \(P_b = \frac{1}{2} e^{-\gamma_b} \)
Outline

1. Recap
2. Performance analysis of linear modulation
3. Linear modulation in fading
4. Diversity
Performance in fading

System model

\[y[i] = \sqrt{\gamma[i]} x[i] + n[i] \]

Different metrics

- Average probability of error: Relevant when channel is fast fading
- Outage probability: Relevant when channel is slow fading
- Combined Outage + Avg. probability of error: shadowing (slow) and fading (fast)
Problem 1
Outage probability relevant when symbol time is much less than coherence time of channel
Computing the average probability of error

Idea
- Integrate the Q function over fading distributions
- Use change of integration order to try to get closed form expressions

Some useful relations
- P_b for BPSK in Rayleigh $\approx \frac{1}{4\bar{\gamma}}$ (Closed form also possible)
- P_b for DPSK in Rayleigh $\approx \frac{1}{2\bar{\gamma}}$ (Closed form possible)
- $Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = \int_0^{\pi/2} e^{-x^2/(2\sin^2 \phi)} d\phi$
- Average BER computation is often MGF computation as $Q(\sqrt{\gamma}) \leq \frac{1}{2} e^{-\gamma/2}$
\(\bar{P}_s \) using MGF \((\mathcal{M}_\gamma(s) = \int_0^\infty e^{s\gamma} p(\gamma) d\gamma) \)

Idea

Use fact that

\[
Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \frac{1}{\pi} \int_0^{\pi/2} e^{-x^2/2 \sin^2 \phi} d\phi \leq \frac{1}{2} e^{-x^2/2}
\]

\[
\bar{P}_s \approx \int_0^\infty \frac{\alpha M}{\pi} Q(\sqrt{\beta M \gamma}) p(\gamma) d\gamma
\]

\[
= \frac{\alpha M}{\pi} \int_0^{\gamma=\infty} \int_0^{\phi=\pi/2} e^{-\beta M \gamma/2 \sin^2 \phi} p(\gamma) d\phi d\gamma
\]

\[
= \frac{\alpha M}{\pi} \int_0^{\phi=\pi/2} \int_0^{\gamma=\infty} e^{-\beta M \gamma/2 \sin^2 \phi} p(\gamma) d\gamma d\phi
\]

\[
= \frac{\alpha M}{\pi} \int_0^{\phi=\pi/2} \mathcal{M}_\gamma(-\beta M / 2 \sin^2 \phi) d\phi
\]
Combined outage and average error probability

Setting
Shadowing time scales are small

Idea
Three SNRs:
- γ_s: Instantaneous (random)
- $\bar{\gamma}_s$: Averaged over multipath fading (random)
- $\bar{\bar{\gamma}}_s$: Averaged over multipath fading and shadowing (influenced by e.g. path loss)
Outage in multipath fading

Setting
Shadowing time scales are large

Idea
- \bar{P}_s: shadowing time scales large for \bar{P}_s to be relevant
- γ_s: Instantaneous (random)
- $\bar{\gamma}_s$: Averaged over multipath fading (usually fixed)
Question, for DPSK

Formulas

- \(P_b = \frac{1}{2} e^{-\gamma_b} \)
- \(\bar{P}_b = \frac{1}{2(1+\bar{\gamma}_b)} \) in Rayleigh fading
- \(P_{\text{out}} = 1 - e^{-\gamma_0/\bar{\gamma}_b} \) in Rayleigh fading at level \(\gamma_0 \)
- \(P_{\text{out}} = Q \left(\frac{P_r - P_{\text{target}}}{\sigma} \right) \) due to shadowing with variance \(\sigma^2 \)

Question

What is the SNR for a given \(P_{\text{out}} \)?

Answer: It depends!

- In combined outage and average: Outage is due to shadowing, use fourth formula
- In fading: Outage is due to fading, use third formula
Question, for DPSK

Formulas

- \(P_b = \frac{1}{2} e^{-\gamma_b} \)
- \(\bar{P}_b = \frac{1}{2(1+\gamma_b)} \) in Rayleigh fading
- \(P_{\text{out}} = 1 - e^{-\gamma_0/\bar{\gamma}_b} \) in Rayleigh fading at level \(\gamma_0 \)
- \(P_{\text{out}} = Q\left(\frac{P_r-P_{\text{target}}}{\sigma}\right) \) due to shadowing with variance \(\sigma^2 \)

Question

What is the \(\gamma_b \) (or \(\bar{\gamma}_b \)) for a given \(P_s \) (or \(\bar{P}_s \))?

Answer: It depends!

- In combined outage and average: \(\bar{P}_s \) is averaged over fading, use second formula
- In multipath fading: \(P_s \) is due to instantaneous SNR, use first formula
On error floors

Idea

As $\gamma_s \to \infty$, $P_{\text{error}} \to 0$ usually. Not true if there is an *error floor*!

Some reasons

- Differential modulation with large symbol times and/or fast fading (due to small T_c)
- Due to intersymbol interference ISI (or small B_c) $P_b \approx \left(\frac{\sigma}{T_s}\right)^2$

Some factors

- Correlation function of channel (channel coherence time T_c and bandwidth B_c)
- Fading statistics, symbol time T_s

Question

What happens to error floors if T_s decreases or data rate increases?
Problem 2

Use formula for Rayleigh fading with DQPSK, i.e. (6.92), with $K = 0$, with the ρ_C function given by the Jakes’ formula (uniform scattering). This gives error floor due to doppler.

Problem 3

- Use average error probability requirement to get $\bar{\gamma}_b$
- Use P_{out} requirement to set the target power in the presence of shadowing and path loss
- Use cell coverage area formula, if appropriate
Outline

1 Recap

2 Performance analysis of linear modulation

3 Linear modulation in fading

4 Diversity
Diversity

Idea
Use of independent fading realizations can reduce the probability of error/outage events

Some observations
- Diversity can be in time, space, frequency, polarization, . . .
- Diversity order used as a measure of diversity, defined as
 \[M = \lim_{\bar{\gamma} \to \infty} -\frac{\log P_e}{\log \bar{\gamma}}, \quad P_e = \bar{P}_s \text{ or } P_{out} \]
- Can also use array gain (or SNR gain) \(\bar{\gamma}_\Sigma / \bar{\gamma} \), where \(\bar{\gamma}_\Sigma \) is the average SNR after “diversity combining”
Diversity order

Specifying diversity order M is roughly equivalent to saying that at high $\bar{\gamma}$,

$$\bar{P}_e \approx (\bar{\gamma})^{-M}$$

Array gain

Array gain A_g is equivalent to ratio of average SNRs after diversity combining

$$A_g = \frac{\bar{\gamma} \Sigma}{\bar{\gamma}}$$
Diversity combining techniques

In this class, we have talked about two schemes to exploit diversity, both at the receiver.

System model

\[r = \gamma x + n \]

Some receiver diversity combining schemes

- **Selection combining**: Choose the largest SNR of the independent realizations.
- **Maximal ratio combining**: Combine all the independent received SNRs to maximize SNR.
Selection combining (SC)

Idea

Given M i.i.d. r.v., $\gamma_1, \ldots, \gamma_M \geq 0$,

$$P(\max_i (\gamma_i) < c) = P(\gamma_i < c)^M$$

Some observations

- Define $\gamma_\Sigma = \max_i \gamma_i$
- In Rayleigh fading $\bar{\gamma}_\Sigma = \bar{\gamma}(\sum_{i=1}^{M} 1/i)$ ($\bar{\gamma}$: average SNR at a branch)
- \bar{P}_b in general difficult, but for DPSK and Rayleigh fading,

$$\bar{P}_b = M/2 \sum_{m=0}^{M-1} (-1)^m \frac{(M-1)}{1 + m + \bar{\gamma}}$$
Outage probability

\[P_{\text{out}} = \left(1 - e^{-\frac{\gamma_0}{\bar{\gamma}}} \right)^M \]

Question (SC in Rayleigh fading)

- What is the diversity gain?: \(M \)
- What is the SNR gain?: \(\sum_{i}^{M} 1/i \)
Maximal ratio combining (MRC)

Idea
Instead of discarding weaker branches, combine the SNRs of all branches, i.e.

\[\gamma_{\Sigma} = \sum_{i=1}^{M} \gamma_i \]

Nuts and bolts
- Need to make the received components of the same phase (not a problem with modern DSP)
- Maximal ratio combining maximizes received SNR, i.e. solves the following problem

\[
\max_{a:||a||^2=1} \frac{\mathbb{E}[|a^H \gamma x|^2]}{\mathbb{E}[|a^H n|^2]}
\]
- MGF of sums decompose into product of individual MGFs so easy to analyse \bar{P}_s
MRC continued (Outage probability and \bar{P}_s)

Outage probability

\[
P_{\text{out}} = 1 - e^{\frac{\gamma_0}{\bar{\gamma}}} \left(\sum_{i=0}^{M-1} \left(\frac{\gamma_0}{\bar{\gamma}} \right)^i / i! \right)
\]

Average probability of error \bar{P}_s

- The MGF of sum decouples into product of MGFs
- For DPSK and Rayleigh fading, average error probability is

\[
\frac{1}{2} E_{\gamma\Sigma}[e^{-\gamma\Sigma}] = \frac{1}{2} \prod_{i=1}^{M} E_{\gamma_i}[e^{-\gamma_i}] = \frac{1}{2} \prod_{i=1}^{M} \mathcal{M}(-1)
\]

- For general constellations \bar{P}_s is approximately of the form

\[
C \int_{\phi=A}^{\phi=B} (\mathcal{M}(-\gamma/2 \sin^2 \phi))^M d\phi
\]
Questions

- What is the diversity order for MRC?: M
- What is the SNR gain for MRC?: M
Homework 5

Problem 4
Concepts in SC (Selection combining) - probability of outage

Problem 5
Concepts in MRC - Deriving optimal weights, computing \hat{P}_s

Problem 6
- Combining using MRC
- Capacity using CSIT
- Average probability of error, outage probability
Problem 7
Diversity gain in SC and MRC at high/low SNR.

Problem 8
Concepts in MRC - Using MGF approach to find \hat{P}_s