EE359 Discussion Session 7
Adaptive Modulation, MIMO systems

November 11, 2015
Outline

1. Recap

2. Adaptive transmit schemes
 - Variable rate variable power
 - Discrete rate variable power
 - Validity
 - Channel estimation errors

3. MIMO systems
 - Representation
 - Capacity
Last discussion session

- Midterm review

This session
- Adaptive modulation and adaptive power MQAM
- MIMO (multiple input multiple output) systems
Outline

1 Recap

2 Adaptive transmit schemes
 - Variable rate variable power
 - Discrete rate variable power
 - Validity
 - Channel estimation errors

3 MIMO systems
 - Representation
 - Capacity
Adapt to what?

Idea

Use the estimate of the instantaneous channel state fed back to the transmitter

Adapt what?

- Power
- Modulation (rate)
- Coding
- QoS (quality of service or BER P_b)
- ...

Problems

Estimate of the channel may be:

- Erroneous (due to receiver measurement error)
- Outdated (due to non zero delay of the feedback link)
Adapt what?

- Power
- Modulation
- Coding
- QoS (quality of service or BER P_b)
- ...
Adaptive schemes used in many high performance systems

Lots of tunable parameters

- Adaptive modulation: 802.11ac (latest commercial Wifi standard) uses BPSK, QPSK, 16 QAM, 64 QAM, 256 QAM
- Adaptive power: Used more in multiuser systems (e.g. power control in CDMA systems) (we are discussing point to point channels here)
- Adaptive rate coding: Also used for QoS requirements, e.g. 802.11ac has coding rates of $1/2, 2/3, 3/4, 5/6$
- Adaptive spatial streams: Different configurations for up to 8×8 MIMO
- Adaptive bandwidth: 802.11 has 20, 40, 60, 80 or 160 MHz channels
Outline

1 Recap

2 Adaptive transmit schemes
 • Variable rate variable power
 • Discrete rate variable power
 • Validity
 • Channel estimation errors

3 MIMO systems
 • Representation
 • Capacity
Spectral efficiency and target BER

Spectral efficiency

Simply defined as the number of bits sent on average per unit bandwidth (i.e. $E_i[\log_2(M_i)]$ bits where an M_i-ary constellation is sent at time i)

Target BER

- Probability of error P_b cannot be zero for practical systems
- For 1 symbol, SNR γ, *no coding*, nearest neighbour decoding for an MQAM constellation,

$$P_b \leq 0.2e^{-1.5\gamma M^{-1}}$$
Spectral efficiency and target BER

Spectral efficiency

Simply defined as the number of bits sent on average per unit bandwidth (i.e. $E_i[\log_2(M_i)]$ bits where an M_i-ary constellation is sent at time i).

Target BER

- Probability of error P_b cannot be zero for practical systems.
- For 1 symbol, SNR γ, no coding, nearest neighbour decoding for an MQAM constellation,

$$P_b \approx 0.2e^{-1.5\gamma \over M-1}$$
An equivalent way of looking at $P_b \approx 0.2e^{\frac{-1.5\gamma}{M-1}}$

- Given SNR γ, the maximum constellation size “supported” for BER P_b is

$$M \leq 1 - \frac{1.5}{\ln(5P_b)\gamma}$$
An equivalent way of looking at \(P_b \approx 0.2e^{-1.5\gamma M^{-1}} \)

- Given SNR \(\gamma \), the maximum constellation size “supported” for BER \(P_b \) is
 \[
 M \leq 1 + K\gamma
 \]

Questions

- What happens when \(K > 1 \)?
- Is a bigger \(K \) better from a performance standpoint?
- What does \(K \) depend on/how do we improve \(K \)?
- Does smaller BER mean smaller or larger \(K \)?
An equivalent way of looking at $P_b \approx 0.2e^{-1.5\gamma M - 1}$

- Given SNR γ, the maximum constellation size “supported” for BER P_b is
 $$M \leq 1 + K\gamma$$

Questions

- What happens when $K > 1$?
 Spectral efficiency greater than capacity

- Is a bigger K better from a performance standpoint?
 Bigger K means more spectral efficiency for a given power

- What does K depend on/how do we improve K?
 Coding, BER, blocklength/latency/delay

- Does smaller BER mean smaller or larger K?
 Smaller K
Variable rate variable power MQAM

Idea
Maximize spectral efficiency (S.E.) subject to average power constraints

Math

\[
\text{maximize } P(\gamma) \mathbb{E}[\log_2(M)] \\
\text{s.t. } \mathbb{E}[P(\gamma)] = \bar{P}
\]

Solution
Optimal \(P(\gamma) \) given by

\[
P(\gamma)/\bar{P} = \begin{cases}
1/\gamma_0 - 1/(\gamma K) & \gamma \geq \gamma_0/K \\
0 & \gamma < \gamma_0/K
\end{cases}
\]

where \(\gamma_0 \) satisfies \(\mathbb{E}[(K/\gamma_0 - 1/\gamma)1(\gamma > \gamma_0/K)] = K \). Optimal S.E. is

\[
\mathbb{E}[\log_2(K\gamma/\gamma_0)1(\gamma > \gamma_0/K)]
\]
Variable rate variable power MQAM

Idea
Maximize spectral efficiency (S.E.) subject to average power constraints

Math

\[
\text{maximize}_P P(\gamma) \ E[\log_2 (1 + KP(\gamma)/\bar{P})] \\
\text{s.t. } E[P(\gamma)] = \bar{P}
\]

Solution

Optimal \(P(\gamma) \) given by

\[
P(\gamma)/\bar{P} = \begin{cases}
1/\gamma_0 - 1/(\gamma K) & \gamma \geq \gamma_0/K \\
0 & \gamma < \gamma_0/K
\end{cases}
\]

where \(\gamma_0 \) satisfies \(E[(K/\gamma_0 - 1/\gamma) \mathbb{1}(\gamma > \gamma_0/K)] = K \). Optimal S.E. is

\[
E[\log_2 (K\gamma/\gamma_0) \mathbb{1}(\gamma > \gamma_0/K)]
\]
More details about variable rate variable power MQAM

Comparison of solution with Shannon capacity expression

- Same waterfilling ideas work in this case
- “Rate” M is now the size of the constellation
- Capacity expression if $K = 1$; does it imply BER for capacity is non zero?
- K represents “power loss” due to BER requirement

Extension of BER constrained schemes

- Channel inversion: S.E. is $\log_2(1 + K\sigma)$, where $\sigma = 1/E[1/\gamma]$
- Truncated channel inversion: S.E. is $(1 - P(\gamma < \gamma_0)) \log_2(1 + K\sigma)$, where $\sigma = 1/E[1/\gamma 1(\gamma > \gamma_0)]$.
More details about variable rate variable power MQAM

Comparison of solution with Shannon capacity expression

- Same waterfilling ideas work in this case
- “Rate” M is now the size of the constellation
- Capacity expression if $K = 1$; does it imply BER for capacity is non zero? No!
- K represents “power loss” due to BER requirement

Extension of BER constrained schemes

- Channel inversion: S.E. is $\log_2(1 + K\sigma)$, where $\sigma = 1/E[1/\gamma]$
- Truncated channel inversion: S.E. is $(1 - P(\gamma < \gamma_0)) \log_2(1 + K\sigma)$, where $\sigma = 1/E[1/\gamma 1(\gamma > \gamma_0)]$.
More details about variable rate variable power MQAM

<table>
<thead>
<tr>
<th>Comparison of solution with Shannon capacity expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Same waterfilling ideas work in this case</td>
</tr>
<tr>
<td>• “Rate” M is now the size of the constellation</td>
</tr>
<tr>
<td>• Capacity expression if $K = 1$; does it imply BER for capacity is non zero?</td>
</tr>
<tr>
<td>• K represents “power loss” due to BER requirement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extension of BER constrained schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Channel inversion: S.E. is $\log_2(1 + K\sigma)$, where $\sigma = 1/E[1/\gamma]$</td>
</tr>
<tr>
<td>• Truncated channel inversion: S.E. is $(1 - P(\gamma < \gamma_0)) \log_2(1 + K\sigma)$, where $\sigma = 1/E[1/\gamma \mathbb{1}(\gamma > \gamma_0)]$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>But....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate cannot be continuous in practice</td>
</tr>
</tbody>
</table>
Outline

1 Recap

2 Adaptive transmit schemes
 - Variable rate variable power
 - Discrete rate variable power
 - Validity
 - Channel estimation errors

3 MIMO systems
 - Representation
 - Capacity
Continuous rate continuous power MQAM

Problem

$$\max_{P(\gamma)} \mathbb{E}[\log_2(M(\gamma))]$$

s.t. $$\mathbb{E}[P(\gamma)] = \bar{P}, \quad P_b(\gamma) \leq P_b$$

The solution

Use waterfilling

Figure: M versus γ
Discrete rate variable power MQAM

Problem

$$\max_{P(\gamma), M(\gamma)} E[\log_2(M(\gamma))]$$

s.t. $E[P(\gamma)] = \bar{P}$, $M(\gamma) \in \mathcal{M}$, $P_b(\gamma) \leq P_b$

Ideas to approximate solution

- Given available constellations $\mathcal{M} = \{M_1, \ldots, M_n\}$, choose a constellation which meets the P_b target for a given channel state γ
- Reduce transmit power to keep BER constant if channel is good

Figure: M versus γ
Discrete rate variable power MQAM

Problem

$$\max_{P(\gamma), M(\gamma)} E[\log_2 (M(\gamma))]$$
\[\text{s.t. } E[P(\gamma)] = \bar{P}, M(\gamma) \in \mathcal{M}, P_b(\gamma) \leq P_b\]

Ideas to approximate solution

- Given available constellations $\mathcal{M} = \{M_1, \ldots, M_n\}$, choose a constellation which meets the P_b target for a given channel state γ
- Reduce transmit power to keep BER constant if channel is good

Figure: M versus γ
Discrete rate variable power MQAM

Problem

\[
\max_{P(\gamma), M(\gamma)} E[\log_2(M(\gamma))] \\
\text{s.t. } E[P(\gamma)] = \bar{P}, \quad M(\gamma) \in \mathcal{M}, \quad P_b(\gamma) \leq P_b
\]

Ideas to approximate solution

- Given available constellations \(\mathcal{M} = \{M_1, \ldots, M_n\} \), choose a constellation which meets the \(P_b \) target for a given channel state \(\gamma \)
- Reduce transmit power to keep BER constant if channel is good

Figure: \(M \) versus \(\gamma \)
Discrete rate variable power MQAM

Problem

\[
\max_{P(\gamma), M(\gamma)} \mathbb{E}[\log_2(M(\gamma))] \\
\text{s.t. } \mathbb{E}[P(\gamma)] = \bar{P}, \ M(\gamma) \in \mathcal{M}, P_b(\gamma) \leq P_b
\]

Ideas to approximate solution

- Given available constellations \(\mathcal{M} = \{M_1, \ldots, M_n\} \), choose a constellation which meets the \(P_b \) target for a given channel state \(\gamma \)
- Reduce transmit power to keep BER constant if channel is good

Figure: \(M \) versus \(\gamma \)
Power adaptation

Idea

Assuming that $P_b \approx 0.2e^{-\frac{1.5\gamma}{M-1}}$, for constant M, $P_b \downarrow$ as $\gamma \uparrow$

To conserve power simply reduce power if channel state is good!

\[\frac{(M_3 - 1)/K}{\gamma_3} \quad \frac{(M_2 - 1)/K}{\gamma_2} \quad \frac{(M_1 - 1)/K}{\gamma_1} \]

Figure: $\gamma P(\gamma) / \bar{P}$ versus γ

Resultant spectral efficiency (S.E.)

\[R/B = \sum_i \log_2(M_i)p(\gamma_i \leq \gamma < \gamma_{i+1}) \]
Power adaptation

Idea

Assuming that $P_b \approx 0.2e^{-1.5\gamma} \frac{1}{M-1}$, for constant M, $P_b \downarrow$ as $\gamma \uparrow$

To conserve power simply reduce power if channel state is good!

Resultant spectral efficiency (S.E.)

$$R/B = \sum_{i} \log_2(M_i)p(\gamma_i \leq \gamma < \gamma_{i+1})$$
Power adaptation

Idea

Assuming that $P_b \approx 0.2 e^{-1.5 \frac{\gamma}{M-1}}$, for constant M, $P_b \downarrow$ as $\gamma \uparrow$

To conserve power simply reduce power if channel state is good!

![Graph](image)

Figure: $P(\gamma)/\bar{P}$ versus γ

Resultant spectral efficiency (S.E.)

$$R/B = \sum_i \log_2(M_i)p(\gamma_i \leq \gamma < \gamma_{i+1})$$
And so on . . .

- What we have presented so far is achievable, but not necessarily optimal.
- Reduction in optimization complexity achieved by using insights from waterfilling solutions.
- Can also use insights from channel inversion/truncated channel inversion.
- Can extend ideas to discrete power, discrete rate.
Outline

1 Recap

2 Adaptive transmit schemes
 • Variable rate variable power
 • Discrete rate variable power
 • Validity
 • Channel estimation errors

3 MIMO systems
 • Representation
 • Capacity
Using adaptive schemes

Idea

The channel cannot change too fast!

- Valid when time that channel “stays” in a particular state is much higher than several symbol times
- Calculation in terms of level crossing rates with Markov assumption (with jump only between adjacent regions)

Figure: Markov assumption \((R_0 = \{\gamma : \gamma < \gamma_0\}, R_1 = \{\gamma : \gamma_0 \leq \gamma < \gamma_1\}, \ldots)\)
Homework 6

Problem 1
1 Use the adaptive rate and power adaptation assuming continuous $M(\gamma)$ for first two parts
2 Use the truncated channel inversion formulation for the last part (again using continuous modulation assumption)

Problem 2
Use the fact that the number of constellation points is finite; maximize spectral efficiency over all possible γ_0 (dictated by the available constellations)

Problem 3
Use the Markov model in the first part and a different BER expression for the last part
Outline

1 Recap

2 Adaptive transmit schemes
 • Variable rate variable power
 • Discrete rate variable power
 • Validity
 • Channel estimation errors

3 MIMO systems
 • Representation
 • Capacity
<table>
<thead>
<tr>
<th>Basic effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>True value γ, but our estimate is $\hat{\gamma}$; what is the error?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Some expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Can be characterized by $p(\gamma, \hat{\gamma})$</td>
</tr>
<tr>
<td>- Approximation for P_b gives</td>
</tr>
</tbody>
</table>

$$P_b(\gamma, \hat{\gamma}) \approx 0.2[5P_b]^{\gamma/\hat{\gamma}}$$

(depends only on $\epsilon = \hat{\gamma}/\gamma$!)

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>What happens if $\gamma > \hat{\gamma}$? (in terms of power and BER?)</td>
</tr>
</tbody>
</table>
Homework 6

Problem 4 hint

The BER under the approximation we saw depends only on the statistics of ϵ (not the joint statistics of γ and $\hat{\gamma}$)

Problem 5

- For part a, modulation used when $P_b(\gamma) \leq P_{\text{floor}}$.
- For part b, y_t, h_t, h_{t+1} are jointly gaussian. $y_t = x_t h_t + n_t$. Can be used to find MMSE estimate $\hat{h}_t = E[h_t|y_t, x_t]$.
- For part c, $h_{t+1} = ah_t + \sqrt{1-a^2}n_{t,2}$ for appropriate a. Can be used to find MMSE estimate.
- $P_b(|h_{t+1}|^2, |\hat{h}_{t+1}|^2)$ is the probability of error of modulation scheme (chosen by estimate $|\hat{h}_{t+1}|^2$) with SNR $|\hat{h}_{t+1}|^2$.
Outline

1 Recap

2 Adaptive transmit schemes
 - Variable rate variable power
 - Discrete rate variable power
 - Validity
 - Channel estimation errors

3 MIMO systems
 - Representation
 - Capacity
Outline

1 Recap

2 Adaptive transmit schemes
 - Variable rate variable power
 - Discrete rate variable power
 - Validity
 - Channel estimation errors

3 MIMO systems
 - Representation
 - Capacity
Representing MIMO systems

Assumptions
- Narrowband signals
- N_t transmit antennas
- N_r receive antennas
- Noise \mathbf{n} is zero mean with a covariance matrix of $\sigma^2 \mathbf{I}_{N_r}$

Idea
Represent gain from transmitter antenna j to receiver antenna i by $h_{i,j}$
Assumptions

- Narrowband signals
- N_t transmit antennas
- N_r receive antennas
- Noise \mathbf{n} is zero mean with a covariance matrix of \mathbf{I}_{N_r}

Idea

Represent gain from transmitter antenna j to receiver antenna i by $h_{i,j}$
System model

Model

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_{N_r}
\end{bmatrix} =
\begin{bmatrix}
 h_{1,1} & \cdots & h_{1,N_t} \\
 \vdots & \ddots & \vdots \\
 h_{N_r,1} & \cdots & h_{N_r,N_t}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_{N_t}
\end{bmatrix} +
\begin{bmatrix}
 n_1 \\
 \vdots \\
 n_{N_r}
\end{bmatrix}
\]

where \(x \) is what transmitter sends and \(y \) is what receiver sees.

Transmit power constraint

\[
E[xx^*] = \sum_{i=1}^{N_t} E[|x_i|^2] \leq \rho
\]
Decomposition of H

Idea
Use the singular value decomposition (SVD) of channel matrix

$$H = U \Sigma V^H$$

Parallel channel decomposition
- Transmitter sends $x = V \tilde{x}$ (transmit precoding)
- Receiver obtains $\tilde{y} = U^H y$ (receiver shaping)

$$\tilde{y} = \Sigma \tilde{x}$$

Figure: Equivalent parallel channels (no “crosstalk” or interchannel interference)
Outline

1 Recap

2 Adaptive transmit schemes
 - Variable rate variable power
 - Discrete rate variable power
 - Validity
 - Channel estimation errors

3 MIMO systems
 - Representation
 - Capacity
Channel capacity with Tx and Rx CSI

Expression

Under system model, can be shown to be

\[
C = \max_{R_x: \text{Tr}(R_x) \leq \rho} B \log_2 \left| I + \frac{1}{\sigma^2} H R_x H^H \right|
\]

Equivalent expression

By using parallel decomposition, we get

\[
C = \max_{\rho: \sum_i \rho_i \leq \rho} B \sum_i \log_2 (1 + \rho_i \sigma_i^2)
\]

Question

How do you solve this?
Channel capacity with Tx and Rx CSI

Expression

Under system model, can be shown to be

\[
C = \max_{\mathbf{R}_x : \text{Tr}(\mathbf{R}_x) \leq \rho} \ B \log_2 \left| \mathbf{I} + \mathbf{H} \mathbf{R}_x \mathbf{H}^H \right|
\]

Equivalent expression

By using parallel decomposition, we get

\[
C = \max_{\rho : \sum_i \rho_i \leq \rho} \ B \sum_i \log_2 (1 + \rho_i \sigma_i^2)
\]

Question

How do you solve this? Waterfill!
Channel capacity with Rx CSI only

Idea

Cannot use the channel realization at the transmitter; so spread energy equally at all the transmitters

Capacity expression

\[
C = \max_{R_x: R_x = \rho/N_t I_{N_t}} B \log_2 \left| I + H R_x H^H \right|
\]

Equivalent expression

\[
C = \sum_i B \log_2 (1 + \rho \sigma_i^2 / N_t)
\]
Homework 6

Problem 6
- For part a, use symmetry or AM-GM inequality
- For part b, use Hadamard’s inequality

Problem 7
Use the law of large numbers and note that M_t is fixed